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Tissue clearing method in visualization of cancer progression and metastasis
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ABSTRACT
Since various imaging modalities have been developed, cancer metastasis can be detected from an early 
stage. However, limitations still exist, especially in terms of spatial resolution. Tissue-clearing technology 
has emerged as a new imaging modality in cancer research, which has been developed and utilized for 
a long time mainly in neuroscience field. This method enables us to detect cancer metastatic foci with 
single-cell resolution at whole mouse body/organ level. On top of that, 3D images of cancer metastasis 
of whole mouse organs make it easy to understand their characteristics. Recently, further applications 
of tissue clearing methods were reported in combination with reporter systems, labeling, and machine 
learning. In this review, we would like to provide an overview of this technique and current applications in 
cancer research and discuss their potentials and limitations.
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Imaging modalities in cancer research

Metastasis is a lethal event for cancer patients, and controlling 
metastasis is a key action to prolong their survival rates. It has 
been extensively studied for deciphering how cancer cells 
metastasize to other organs from primary tumors; however, 
detailed mechanisms are still not fully understood. To elucidate 
the complicated mechanisms, it is important to detect the 
initiation of cancer metastasis in vivo. Toward this purpose, 
various imaging modalities have been developed and utilized 
for cancer research. For example, computed tomography (CT) 
and magnetic resonance imaging (MRI) are noninvasive imaging 
system for cancer diagnosis (1, 2). Bioluminescence imaging 
(BLI) with luciferase has been widely used to monitor cancer 
progression and metastasis in mouse models (3, 4). Recent 
improvement in BLI enables the monitoring of cancer 
progression spatiotemporally with single-cell resolution (5). 
Positron emission tomography (PET), nuclear magnetic 
resonance (NMR), ultra-sound imaging, and fluorescence 
imaging are also utilized (1, 2, 6). These various imaging systems 
are accelerating early detection of cancer and leading to 
improved prognosis; however, there are still limitations, 
especially in terms of spatial resolution.

Tissue-clearing methods and microscopies

Tissue-clearing technology has a long history and has been 
used dominantly in neuroscience research. This technology was 

first reported over 100 years ago by the German anatomist 
Walter Spalteholz (7). Then, it has been developed extensively in 
recent decades, and many types of clearing methods are 
currently available (8). These were categorized with three 
groups, including solvent-based (hydrophobic, i.e. BABB and 
3DISCO), aqueous-based (hydrophilic, i.e. Scale, SeeDB, and 
Ce3D), and hydrogel-based (i.e. CLARITY) (9–17). The basic 
strategy lying on all methods is minimizing light scattering by 
removing lipids (delipidation), suppressing light absorption by 
removing pigments (decolorization), and matching the 
refractive index (RI). To sustain the tissue structure and 
molecules, fixation is required before clearing with 
paraformaldehyde (PFA) or glutaraldehyde (GA), which are 
commonly used in many protocols (12, 18, 19). Polyepoxide 
molecules such as polyglycerol-3-polyglycidyl ether (P3PE) are 
also used for fixation in the stabilization to harsh conditions via 
intramolecular epoxide linkages to prevent degradation 
(SHIELD) protocol, which can retain protein, mRNA, and 
fluorescent protein at high rate after clearing (20). With 
ethylenediaminetetraacetic acid (EDTA), bones can be cleared 
by removing calcium phosphate (decalcification) (21, 22). 
Various methods including 3DISCO and CLARITY are used for 
clearing, but all methods have pros and cons. Although these 
methods were categorized into the three groups above, recent 
studies suggested that combining solvent-based and aqueous-
based delipidation would be beneficial, and many researchers 
reported various combined protocols (23). In 2016, Ueda’s group 
developed an aqueous-based tissue-clearing method, which is 
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called CUBIC (clear, unobstructed brain/body imaging cocktails, 
and computational analysis) (21, 24, 25). The CUBIC reagents are 
safe to handle and can be easily reproduced with high 
transparency. This method enables us to analyze whole mouse 
bodies/organs with single-cell resolution (24, 26). Some recent 
studies succeeded to clear human tissues with high quality. 
Ertürk and colleagues introduced small-micelle-mediated 
human organ efficient clearing and labeling (SHANEL), which 
revealed three-dimensional (3D) structure of human brain, eye, 
and kidney (27, 28). Staining with antibodies or dye molecules 
(labeling) is often performed to visualize target molecules with 
3D images (29). Labeling with a nanobody instead of an antibody 
is a new trend considering its high tissue penetration, which is 
due to the small size of the nanobody (approximately 15 kDa) as 
it only contains the variable domain of the heavy chain of heavy 
chain only antibody. Vaughan’s group reported that the FLASH 
(fast light-microscopic analysis of antibody-stained whole 
organs) method with mild antigen retrieval restored epitopes 
and improved sample permeability, resulted in better staining 
(30, 31). 

For visualizing cell structures with cleared samples in 3D, 
microscopy is required, which can image in deeper tissue 
with high resolution. Confocal microscopy and two-photon 
microscopy are options to be selected especially for 
magnified fields. However, they are incorporated with a 
point-scanning system, which results in long acquisition 
time. Light sheet fluorescence microscopy (LSFM) is becoming 
a very powerful tool for cleared tissues with rapid scanning, 
which reduces photobleaching (32). Using LSFM, 3D images 
are reconstituted from whole mouse brains to whole mouse 
body within a short time (33). Wei et al. showed that Raman 
scattering (SRS) microscopy can also be used with cleared 

mouse tissues, resulting in visualization with over 10-fold 
depth increased (34). 

Utilization of tissue-clearing methods to detect can-
cer metastasis

Tissue-clearing methods had been used mainly in neuroscience 
research, and it was just recently that researchers started using 
them for cancer research. Our group reported the applications 
of CUBIC with 13 mouse cancer models using 9 cancer cell lines 
(18). There are two major advantages of this imaging system 
relative to other imaging modalities. First, cancer metastasis in 
mouse organs can be detected by this method with single-cell 
resolution at whole organ level. We succeeded in visualizing 
lung metastasis foci with single cell resolution (Figure 1A). We 
studied the effect of transforming growth factor (TGF)-β in 
cancer metastasis, which is a key cytokine to induce epithelial-
mesenchymal transition (EMT) (35). To study the role of TGF-β, 
we injected human lung adenocarcinoma A549 cells 
intravenously into mice with or without TGF-β pretreatment. We 
found out that TGF-β-treated A549 cells have a higher ability to 
metastasize in lungs (Figure 1A) (18). The quantification results 
indicated that the EMT phenotype induced in cancer cells did 
not affect the process of capillary arrest but accelerated survival 
and proliferation of the cells in the lungs. This observation could 
be achieved because CUBIC enabled us to count the exact 
number of cancer cells in whole mouse lung samples. 
Interestingly, the post-immunohistochemistry after CUBIC 
revealed that metastatic A549 cells reversed to epithelial type 
with E-cadherin expression through mesenchymal-epithelial 
transition (MET), suggesting that plasticity of EMT is necessary 
for survival and proliferation of cancer cells at metastatic sites 
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Figure 1.  Representative 3D images of cancer metastasis visualized by CUBIC. (a) Lung metastasis after intravenous injection of A549 lung adenocarcinoma 
cells. A549 cells pretreated with or without TGF-β were injected intravenously, and lungs were analyzed by CUBIC (red: A549 cancer cells expressing mCherry, 
light blue: nuclear staining with Red-Dot2). (b) Brain metastasis after intracardiac injection of cancer cells. MDA-MB-231 human breast cancer cells or OS-RC-2 
human renal cell carcinoma cells were injected intracardially, and brains were analyzed by CUBIC (green: α-SMA+ blood vessels labeled with FITC, red: cancer 
cells expressing mCherry, light blue: nuclear staining with Red-Dot2). The images shown in this figure are from Kubota et al. (18).
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(36, 37). This aspect of tissue-clearing methods, that is precise 
quantification with single cell resolution, could also be applied 
for the evaluation of antitumor drugs at the whole organ level in 
mice (18). The second advantage of this imaging system is that 
cancer metastasis can be monitored with 3D images. In brain 
metastasis, we clearly distinguished the patterns between 
cancer cell lines (Figure 1B). MDA-MB-231 human breast cancer 
cells can only survive along the alpha-smooth muscle actin-
positive (α-SMA+) blood vessels (Figure 1B) (18). On the other 
hand, OS-RC-2 human renal cell carcinoma cells showed 
volumetric metastasis foci far from blood vessels (Figure 1B) 
(18). These differences were not clear when we analyzed the 
data with 2D images, suggesting that 3D images give us a 
valuable insight into characteristics of cancer metastasis. Many 
other studies showed application of tissue-clearing both in 
mouse and human organs bearing cancer metastasis (38). 
Nojima et al. reported that 3D analysis of clinical lymph node 
(LN) specimens showed higher metastatic detection sensitivity 
compared to the conventional 2D method (39).

Our group succeeded in capturing 3D images with not only 
whole mouse organs but also a whole mouse body. Using CUBIC, 
we showed distribution of cancer metastasis, including 
spontaneous metastasis to the lung in OS-RC-2 orthotopic 
inoculation model (18). Ertürk’s group also reported whole mouse 
body imaging with cancer metastasis in a mouse bearing pancreatic 
cancer using vDISCO (nanobody(VHH)-boosted 3D imaging of 
solvent-cleared organs) (40). In addition, his group succeeded in 
monitoring not only cancer metastasis but also distribution of 
antitumor antibody 6A10 (anti-CA12 antibody) (41). These studies 

indicated the important advantage that tissue clearing can give us 
spatial information of cancer metastasis and kinetics of antibodies 
at whole mouse body level with single-cell resolution.

Various potential applications of tissue-clearing technology 
have been explored (Figure 2). For example, it would be beneficial 
if we can add cell cycle information on top of a spatial information 
of cancer metastasis. Our study showed cell cycle of cancer cells in 
each metastatic foci using fluorescent ubiquitination-based cell 
cycle indicator (Fucci) reporter system developed by Miyawaki 
and colleagues, which can detect cell cycle by combination of 
multicolor fluorescent proteins (44–46). Interestingly, the same 
cell line metastasized to different organs showed heterogeneity 
with different stages in cell cycle (42). This study also focused on 
the effect of antitumor drugs on cell cycle and showed that 
5-fluorouracil (5-FU) treatment blocked cell cycle at G2/M phase 
in 4T1 mouse breast cancer cells (42). Some foci, however, showed 
the 5-FU treated 4T1 cells at G0/G1 phase, and this heterogeneity 
between tumor foci in the same organ could contribute to 
antidrug tumor resistance. Heterogeneity of cancer cells also 
plays a key role when circulating tumor cells make clusters and 
metastasize to the second organ, which is called polyclonal 
metastasis (47–49). Kok et al. showed 3D images of liver metastasis 
injected with intestinal tumor-derived organoids and revealed 
that non-metastatic cancer cells can metastasize via the polyclonal 
metastasis through fibrotic change induced by metastatic cancer 
cells (50). Our group compared the lung metastasis efficiency 
when mice were injected intravenously with mixture of two 
different phenotypes of cancer cells, that is TGF-β-treated 
mesenchymal A549 cells and TGF-β-untreated epithelial A549 

Figure 2.  Applications of tissue-clearing in cancer research. After tissue clearing of the organ/body of tumor bearing mice, 3D analyses with single-cell 
resolution are conducted. In addition, the analyses using tissue-clearing methods can be combined with some other methods, including combination with 
some reporter systems, visualization of tumor microenvironment, and signal segmentation and mathematical/AI analysis. The images shown in this figure 
are from Takahashi et al. (42), and Takahashi et al. (43).
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cells (51). The result showed that TGF-β-treated A549 cells 
accelerated metastasis of non-treated A549 cells, indicating that 
EMT-induced cancer cells changed the characteristics of the 
tumor microenvironment at metastatic sites and played a role in 
forming a metastatic niche (51). In the report by Tanaka et al., 
human and mouse formalin-fixed paraffin-embedded (FFPE) 
tumors were cleared with iDISCO, and 3D imaging showed the 
heterogeneity of EMT and angiogenesis inside the tumors (52). 
These studies indicate that 3D images by tissue-clearing is 
compatible with analyzing the cancer heterogeneity at whole 
mouse organ level.

Visualization of tumor microenvironment with 
tissue-clearing

Within tumor microenvironment, not only cancer cells but also 
other types of cells exist, and complicated interactions among 
them accelerate progression of cancer metastasis (53). Immune 
cells are key players within the tumor microenvironment. Tissue-
clearing methods enable us to visualize mouse immune cells, 
including brain microglia with Iba1 and platelets with CD42 (51, 
54, 55). With Ce3D (clearing-enhanced 3D), CD8+ T cells, B cells, 
and macrophages in mouse LNs were visualized with high 
quality (17). Stoltzfus et al. introduced the analysis tool “CytoMAP” 
for visualizing the distribution of dendritic cells (DCs) in murine 
LNs (56). In tumor specimens, tumor-associated macrophages 
(TAM) in mouse lung metastasis were examined, and tumor-
associated neutrophils (TANs) with CD66b and T cells with CD3 
in HNC (head and neck cancer) tumors were visualized with 3D 
images (57, 58).

Another important advantage of 3D images is that it is 
beneficial for studying interactions between cancer foci and 
vasculatures because vascular networks are challenging to be 
analyzed with 2D images. New pipelines for the visualization of 
the vascular networks were reported, which can visualize the 
cerebral vasculature network with 3D images using clearing 
methods (59–61). In the report by Kirst et al., veins, arteries, and 
capillaries were visualized by immunolabeling of several markers 
(i.e. Podocalyxin, CD31, and α-SMA), and datasets were 
generated from 20 mouse brains with characterization of 
vascular network across brain areas (59). Our group also 
succeeded in capturing 3D images of mouse blood and 
lymphatic vessels by visualizing VE-cadherin, α-SMA, and Prox1 
(Prospero homeobox transcription factor 1) and established a 
new quantification method in combination with one of the 
mathematical analysis, known as topological data analysis (TDA) 
(43). Lung lymphatic vessels were visualized in mouse melanoma 
B16F10 intravenous injection model, and the distances between 
metastatic foci and lymphatic vessels were successfully 
calculated with 3D images. The result indicated that lymphatic 
vessels and cancer cells are getting closer in a time-dependent 
manner during the formation of metastatic foci. In addition, TDA 
analysis suggested that the structure of lymphatic vessels might 
be remodeled after intravenous injection of B16F10 tumor cells 
(43). Thus, if transcriptomic analysis at single-cell level can be 
applied to tissue-clearing technology, the roles of lymphatic 

system in progression of cancer metastasis can be analyzed at 
the molecular level (see later).

When cancer cells, immune cells, or vasculatures are 
visualized with high quality, segmentation is required for further 
quantification. Various methods have been established using 
machine learning (59, 60, 62). Our group uses semi-automated 
segmentation using ilastik software for signal classification, and 
data processing was performed in python as described (43, 51, 
54, 63, 64). ImageJ/FIJI and some commercial software including 
IMARIS are also available for segmentation and counting. 
Although most organs are difficult to be normalized among 
samples due to variations in their shape or size, mouse brains 
are relatively easy to normalize because of their uniformity with 
respect to size and shape. The 3D data obtained by tissue-
clearing can be applied to a reference brain data for normalization 
such as CUBIC-Atlas, which is originally based on Allen Brain 
Atlas (54, 65). This type of normalization provides anatomical 
brain information to help determine precise localization of 
metastasis in brain areas.

Limitations and potentials of tissue-clearing for ap-
plications in cancer research

Tissue-clearing methods opened the new doors in cancer research, 
and now cancer metastasis could be monitored with single-cell 
resolution at whole mouse organ/body level. However, there are 
some limitations to overcome. First, this method needs fixation 
before clearing, and therefore, we can only get snapshot data under 
current protocols. Some efforts have been put into clearing with a 
live mouse; however, it is not yet feasible. To overcome this, 
combining tissue-clearing with other imaging modalities such as 
BLI or CT would play a key role in spatiotemporal monitoring of 
metastasis, which gives us time-series information. Second, data 
size becomes larger along with higher quality images captured by 
LSFM. As denoted before, workstations equipped with large RAM 
(random access memory) (i.e. 128–256 GB) are required for image 
processing, including segmentation, quantification, and further 
mathematical analysis, which can restrict their applications (43). 
The last point is relevant for conducting further analysis in terms of 
gene expression. Using tissue-clearing technology, we can capture 
the exact location of cancer metastasis with single cell resolution. 
As discussed earlier, combining reporter system, dyes, or staining 
markers would give us extra information. It would be ideal if gene 
expression of cancer metastasis is examined simultaneously. 
Recently, technology for probing spatial transcriptomics has 
emerged, which gives us gene expression data and 2D spatial 
information simultaneously (66, 67). These spatial transcriptomic 
systems (i.e. Visium by 10X Genomics, GeoMX DSP by NanoString) 
are implemented in many research facilities (68). Although some 
clearing methods are not compatible for retaining mRNA, optimized 
tissue-clearing methods can capture mRNA signals with 3D images 
using mFISH (single-molecule fluorescent in situ hybridization), 
which is a basic method for some spatial transcriptomic 
technologies (20, 55, 69, 70). Heinz and Murakami recently reported 
that their workflow “mFISH3D” enables mRNAs to be visualized 
using clearing with high resolution in mouse and human brains (71). 
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In terms of proteomics, Ertürk’s group recently succeeded in spatial 
mass spectrometry from small portion of cleared samples (72). 
Considering the recent progress in these fields, it might be feasible 
in the near future to combine tissue-clearing and spatial 
transcriptomics, which would give us information on exact location 
and gene expression relevant to cancer metastasis simultaneously 
with single-cell resolution at whole mouse organ level. After 
overcoming these drawbacks, we believe that tissue-clearing 
technology could be a strong imaging modality in cancer research.
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