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REVIEW ARTICLE

Autocrine PDGF stimulation in malignancies

CARL-HENRIK HELDIN

Ludwig Institute for Cancer Research, Uppsala University, BMC, Box 595, S-751 24 Uppsala, Sweden

Abstract
Platelet-derived growth factor (PDGF) isoforms are important mitogens for different types of mesenchymal cells, which have
important functions during the embryonal development and in the adult during wound healing and tissue homeostasis. In
tumors, PDGF isoforms are often over-expressed and contribute to the growth of both normal andmalignant cells. This review
focuses on tumors expressing PDGF isoforms together with their tyrosine kinase receptors, thus resulting in autocrine
stimulation of growth and survival. Patients with such tumors could benefit from treatment with inhibitors of either PDGF or
PDGF receptors.
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Introduction

Members of the platelet-derived growth factor
(PDGF) family are major mitogens for connective
tissue cells, glial cells, and certain other cell types.
Structurally they are homodimers of related A-, B-,
C-, and D-polypeptide chains, and an AB hetero-
dimer (1).
PDGF isoforms exert their cellular effects by bind-

ing to a- and b-tyrosine kinase receptors. Ligand
binding induces dimerization of the receptors; the
a-receptor binds all PDGF chains except the
D-chain, whereas the b-receptor binds the B- and
D-chains. Thus, the different PDGF isoforms induce
different homo- and heterodimeric complexes of
a- and b-receptors. In the dimeric receptor complexes,
receptors phosphorylate each other in trans positions
on specific tyrosine residues, which allows binding and
activation of SH2-domain-containing signaling mole-
cules (1). Some of these have enzymatic activities, such
as phospholipase Cg (PLCg), the tyrosine kinase Src,
the protein tyrosine phosphatase SHP-2, and the
GTPase activating protein for Ras (RasGAP). Alter-
natively, they are adaptor molecules forming com-
plexes with enzymes, such as Grb2, which forms a

complex with SOS1, a nucleotide exchange molecule
that activates Ras, and the p85 regulatory subunit of
phosphatidylinositol 3’-kinase (PI3-kinase), which
forms a complex with the p110 catalytic subunit. In
addition, members of the STAT family of transcription
factors bind to activated PDGF receptors, as do the
adaptor molecules Grb7, Shc, Nck, and Crk.
PDGF isoforms stimulate proliferation, survival,

chemotaxis, and differentiation of cells. They have
important functions during embryonic development
(2), and in the adult during wound healing (3)
and in the control of interstitial fluid pressure (4).
Over-activity of PDGF has been linked to several
pathological conditions, including malignancies
and other conditions involving an excess cell
proliferation, such as fibrotic conditions and athero-
sclerosis (1).
PDGF isoforms are often over-expressed in malig-

nancies and contribute to the growth of certain tumor
types as well as to non-transformed cells in solid
tumors, such as pericytes and smooth muscle cells
of vessels and of stromal fibroblasts. Certain PDGF
receptor-bearing tumor cells produce PDGF iso-
forms, which stimulate cell growth and survival
in an autocrine manner. The aim of the present
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communication is to review the involvement of
autocrine PDGF stimulation in malignancies.

Homology between PDGF and the Sis
oncogene product

PDGF was originally purified from human platelets
(5–8). When the purified PDGF was subjected to
amino acid sequencing, a homology to the product of
the oncogene sis was noticed (9,10). In fact, the gene
for the B-chain of PDGF has been transduced by
the simian sarcoma virus (SSV), and infected cells
were shown to produce large amounts of a PDGF-
BB-like growth factor (11,12). Evidence that the
autocrine stimulation is crucial for cell transfor-
mation was rapidly obtained, e.g. it was shown
that the transformed phenotype of SSV-transformed
fibroblasts can be normalized by inhibitory PDGF
antibodies (13).
The discovery of the homology between PDGF and

Sis was rapidly followed by additional findings of
homologies between products of retroviral oncogenes
and growth factor receptors, as well as with compo-
nents of their intracellular pathways. Together, these
observations provided strong support for the hypoth-
esis that oncogenes transform cells by subverting the
mitogenic pathways of growth factors (14). Further-
more, the findings triggered intensive efforts to inves-
tigate if autocrine mechanisms occur also in human
malignancies.

Autocrine PDGF stimulation in human glioma,
osteosarcoma, and other tumor types

During the 1970s, a hypothesis was formulated that
tumor cells may make their own growth factors and
thereby be self-sufficient with regard to growth stim-
ulatory signals (15). To explore this hypothesis, a
growth factor produced by the human osteosarcoma
cell line U-2OS was purified (16,17). Initial charac-
terization revealed that this factor was similar but not
identical to PDGF purified from platelets; sequenc-
ing showed that it was in fact PDGF-AA, whereas
platelets contain mainly PDGF-AB (18). Autocrine
PDGF receptor activation was demonstrated in
U-2OS cells, but effects on growth stimulation
were more difficult to show, probably because of
the numerous other mutations these cells have
acquired during many years of in-vitro culturing
(19). Similar analyses of glioma cell lines revealed
that co-expression of PDGF isoforms and PDGF
receptors is common, suggesting autocrine mechan-
isms (20–24). Furthermore, analysis of expression of
PDGF isoforms and PDGF receptors in sections of
human glioblastomas provided evidence that both

types of PDGF receptors are involved in autocrine
and paracrine growth stimulation of gliomas, affect-
ing different cellular compartments, however. Thus,
the a-receptor is expressed mainly in the tumor cells,
whereas the b-receptor is expressed in cells of the
supporting stroma (25–29). The levels of expression
of PDGF ligands as well as receptors are higher in
more malignant tumors, suggesting that autocrine
and paracrine effects of PDGF increase with degree
of malignancy. Gliomas are probably the tumor
type in which PDGF autocrine mechanisms are
most important, and nearly 30% of human gliomas
show over-activity of PDGF receptor signaling (30).
Gliomas are discussed further by Lindberg and
Holland (31) in this series.
PDGF has also been implicated in autocrine mec-

hanisms of other tumor types. Thus, malignancy-
dependent expressions of PDGF and PDGF receptors
were observed in sarcomas (32,33). Co-expression of
PDGF and PDGF receptors has also been reported in
an AIDS-related Kaposi’s sarcoma (34) and in menin-
geomas (35,36). Moreover, an autocrine PDGF-BB/
PDGF b-receptor loop was found to mediate survival
of large granular lymphocyte leukemia of both T- and
NK-cell origin (37). In addition, co-expression of
PDGF-AA and PDGF a-receptor in the epithelial
part of Wilms’ tumor of the kidney is common; in
contrast to other tumors with autocrine PDGF
stimulation, the expression of PDGF-A and PDGF
a-receptor in Wilms’ tumor correlates to favorable
prognosis (38).
Screening of 637 human tumor-derived cell lines

revealed that only 2 were sensitive to sunitinib, an
inhibitor which targets the PDGF receptor kinases as
well as other kinases, i.e. a non-small-cell lung cancer
and a rhabdomyosarcoma (39). Both these cell lines
co-express the PDGF a-receptor and PDGF-C.
Moreover, investigation of a large number of human
and mouse rhabdomyosarcomas revealed that the
PDGF a-receptor is a target of the Pax3/Fkhr
chimeric transcription factor, which is found in a
majority of this tumor type (40). This results in
over-expression of the PDGF a-receptor, which is
correlated to poor prognosis (41), and often occurs
together with expression of PDGF-A or -C, thus
creating autocrine loops.
In the rare skin tumor dermatofibrosarcoma pro-

tuberans (DFSP), a specific genetic perturbation is
responsible for the establishment of autocrine PDGF
stimulation. Thus, in this disease the PDGF-B gene is
fused to the collagen 1A1 gene, leading to the pro-
duction of a collagen 1A1/PDGF-B fusion protein,
which is processed to mature PDGF-BB that activates
PDGF receptors on fibroblasts in an autocrine
manner (42–45).
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Taken together, there are thus now several exam-
ples of autocrine mechanisms involving PDGF and
PDGF receptors in different forms of malignancies.

Intracrine versus extracrine PDGF stimulation

While all PDGF isoforms are produced as inactive
precursor molecules, the N-terminal parts of PDGF-
A and -B are removed already intracellularly by furin-
like proteases. In contrast, PDGF-C and -D are
secreted as latent precursor molecules containing
N-terminal CUB domains, which need to be cleaved
off by proteases before these PDGF isoforms can bind
to receptors. Thus, tissue plasminogen activator (tPA)
has been shown to cleave and activate PDGF-CC (46)
and urokinase plasminogen activator (uPA) PDGF-
DD (47), but other proteases may also be involved.
Thus, in cells which express PDGF-AA, -AB, or -BB
together with PDGF receptors, the active ligands will
be present together with the extracellular, ligand-
binding parts of the receptors in the endoplasmic
reticulum, Golgi apparatus, and secretory vesicles
(Figure 1). In such cells, there is evidence that recep-
tors are activated intracellularly before they have
obtained their mature glycosylation and have reached
the cell surface (48-50). However, several observa-
tions support the notion that only a subset of the
intracellular pathways can be activated in intracellular
vesicles, and that the ligand–receptor complex needs
to reach the cell surface before an efficient mitogenic
signal is initiated (Figure 1) (13,51–53). One mech-
anistic explanation could be that certain signal trans-
duction components, critical for the mitogenic
response, are located at the plasma membrane.

In support of this possibility, activated PDGF
b-receptors in sis-transformed cells were found to
interact with certain signaling molecules intracellu-
larly, e.g. PLCg, RasGAP, and PI3-kinase, whereas
efficient interaction with SHP-2, Grb2, and Src
occurred only after the receptor had reached the
plasma membrane (54).
Interestingly, the C-terminals of PDGF-B and a

long splice variant of PDGF-A contain basic amino
acid sequences, which mediate binding to extracellu-
lar matrix molecules (55,56). Moreover, proteolytic
activation of PDGF-DD was found to reveal a reten-
tion motif mediating interactions with pericellular
components (57). The presence of these retention
motifs restricts the action of the PDGF isoforms and
thus enhances autocrine and paracrine stimulation of
cells in the local environment, at the expense of
stimulation of cells at a distance.

Mutations of genes for PDGF receptors in
human malignancies

In addition to classical autocrine stimulation, there
are examples of mutations in the genes for PDGF
receptors, which cause their activation and promote
tumorigenesis. Thus, in chronic myelomonocytic leu-
kemia (CMML), the kinase domain of the PDGF
b-receptor is fused to different partners, e.g. the
transcription factor Tel or rabaptin 5, which have
in common that they can dimerize or oligomerize
(58,59). Analogously, in patients with idiopathic
hypereosinophilia, the kinase domain of the PDGF
a-receptor is fused to FIP1L1 (60,61). A similar
FIP1L1-PDGF a-receptor fusion has been observed
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Figure 1. A: A PDGF receptor-bearing cell that does not produce PDGF itself responds to PDGF via activation of receptors at the cell surface.
This initiates activation of intracellular signaling pathways leading to cell growth, proliferation, and survival. B: In a PDGF receptor-
bearing cell that produces PDGF-A or -B, the ligands will meet and activate the receptors already in the ER, Golgi, and secretary vesicles.
Whereas some intracellular signaling pathways are activated intracellularly, other pathways important for mitogenesis are not activated until the
ligand–receptor complex reaches the cell membrane.
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in systemic mastocytosis (62). In addition to the
juxtaposition of the kinase domains of the receptors,
the loss of regulatory sequences in the juxtamembrane
(63) and transmembrane (64) domains is important
for the increased autophosphorylation and initiation
of signaling pathways promoting cell growth and
survival.
A majority of gastrointestinal stromal tumors

(GISTs) have activating point mutations in Kit, a
tyrosine kinase receptor for stem cell factor, which
is structurally similar to PDGF receptors. However,
some of these tumors are instead driven by point
mutations in the PDGF a-receptor gene affecting
the control mechanisms of the kinase; such mutations
make the receptor kinase constitutively active (65).
Finally, the PDGF a-receptor has been found to

be amplified in a subset of glioblastoma tumors
(66–68), in anaplastic oligodendrogliomas (69), in
esophageal squamous cell carcinoma (70), and in
pulmonary artery intimal sarcoma (71). The large
amounts of receptors expressed on such cells may
cause constitutive activation of the receptors, since
the high receptor density may promote ligand-
independent receptor–receptor interactions. Alter-
natively, the cells at least become very sensitive to
PDGF stimulation. In addition, a transforming dele-
tion mutant of the PDGF a-receptor has been
described in gliomas (72).

Treatment of PDGF-dependent tumors with
PDGF antagonists

Several types of PDGF antagonists have been devel-
oped, including antibodies and aptamers against
PDGF or PDGF receptors, and low-molecular-
weight inhibitors of the receptor kinases as reviewed
by Östman and Heldin (73). A few kinase inhibitors
have been approved for clinical use, including imati-
nib, which is fairly selective for PDGF receptors, Kit
and Abl tyrosine kinases, and sorafinib and sunitinib
which have broader specificities and inhibit also other
kinases.
In the rather rare tumor types in which mutations

of PDGF or PDGF receptor genes drive tumorigen-
esis, e.g. DFSP (74–76), CMML (77,78), hypereo-
sinophilic syndrome (79), and GIST (80), treatment
with imatinib has been shown to have beneficial
effects. Whereas inhibition of glioma cell growth by
imatinib or other PDGF receptor kinase inhibitors has
been observed in animal tumor models (28,81,82), no
clear benefit has been noticed when glioma patients
have been treated with PDGF receptor kinase inhi-
bitors, suggesting that in human glioma perturbations
of PDGF signaling pathways are not of unique
importance. Other genetic alterations have, however,

occurred, which also drive tumor cell growth and
survival.
In addition to a direct effect on tumor cells with

over-active PDGF signaling, PDGF antagonists have
also been shown be useful to target cells of the stroma
of solid tumors (83).

Multistep induction of malignancies

It is well established that the development of a fully
malignant tumor requires several genetic or epige-
netic alterations. It is therefore likely that autocrine
PDGF stimulation is an initial event in tumor pro-
gression, which leads to an expansion of cells that are
targets for neoplastic transformation. Alternatively,
the aberrant production of PDGF may stimulate
the growth of cells that are already genetically altered.
In the case of SSV-induced transformation, there is
also the possibility that the sis oncogene is inserted in
regions of the genome where it affects the expression
of oncogenes or tumor suppressor genes.
The possible importance of insertional mutagenesis

in PDGF-driven gliomagenesis has been explored in
Bengt Westermark’s laboratory using a recombinant
Moloney leukemia virus encoding the PDGF
B-chain (84). Sixty-six common retroviral insertion
sites were identified (85), and retroviral insertion was
found to affect the expression of a number of genes
with a potential role in the regulation of glial cell
growth and survival (86). One of the targeted genes
was the gene for cGMP-dependent protein kinase II;
an anti-proliferative role of this kinase was demon-
strated, which was lost during the loss-of-function
retroviral insertion (87). Another common integra-
tion site was a gain-of-function insertion in the gene
for the transcription factor Sox10 (88); over-expression
of Sox10 was shown to enhance the tumorigenic activ-
ity of PDGF-B but did not alone induce gliomas.
Integrations in the gene for Sox5 were also observed,
but in this case suppression of Sox5 activity was cor-
related to gliomagenesis (89). Loss-of-function retro-
viral insertion in the gene for p190RhoGAP was also
shown to promote glioma development, most likely via
loss of control of Rho signaling (90).
In high-grade oligodendrogliomas, perturbation of

PDGF, or epidermal growth factor, signaling is often
accompanied by homozygous deletion of the INK4a-
ARF locus (91,92). This locus encodes the tumor
suppressor proteins p16INK4a and p14ARF, which
control the Rb and p53 pathways, respectively. In
PDGF-induced oligodendroglioma development,
loss of Ink4a was found to render astrocytes suscep-
tible to PDGF-BB-induced tumorigenesis, whereas
loss of Arf caused increased malignancy (93). Taken
together, these observations illustrate that over-activity
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of PDGF receptors need to be complemented by other
cellular alterations to promote tumorigenesis.

Autocrine PDGF stimulation during
epithelial-mesenchymal transition

Epithelial cells normally do not contain PDGF
receptors. However, epithelial tumors can undergo
epithelial-mesenchymal transition (EMT), a change
in phenotype which makes the tumor cells more
invasive and prone to make metastases (94). In vitro,
EMT is promoted e.g. by stimulation by transforming
growth factor-b (TGFb), certain tyrosine kinase
receptor ligands, and Notch. In conjunction with
EMT, PDGF and PDGF receptors are induced
(95). Interestingly, the metastatic potential of mam-
mary epithelial tumors was shown to be dependent on
an autocrine PDGF/PDGF receptor loop; inhibition
of PDGF by a dominant negative receptor or by
imatinib inhibited metastasis in mouse models (96).
The invasiveness of human mammary carcinomas
correlates to the expression of PDGF a- and
b-receptors (97), and earlier studies had shown that
the expression of PDGF correlates with unfavorable
prognosis (98). Expression of PDGF and PDGF
receptors also correlates to poor prognosis of lung
carcinoma (99). Moreover, TGFb-induced EMT of
mouse hepatocellular carcinoma was found to involve
expression of PDGF-AA and PDGF a-receptor and
the establishment of an autocrine loop (99). In this
tumor type, hypoxia was shown to induce PDGF-
BB production via induction of HIF-1a (100).
PDGF-D and the PDGF b-receptor have been

implicated in autocrine mechanisms in prostate can-
cer cell lines (101). Prostate cancer cells secrete
matriptase, which activates PDGF-D by proteolytic
removal of the CUB domain, thus inducing an auto-
crine stimulation. Moreover, immunohistochemical
stainings of sections of human prostate cancers
revealed co-staining of PDGF-D and matriptase
(101). In PC-3 prostate carcinoma cells, PDGF-
DD has furthermore been shown to drive the
EMT process by repressing miR-200 which targets
ZEB1, ZEB2, and Snail2, critical components of the
EMT transcriptional program (102). A role for
PDGF a-receptors in promoting metastasis of pros-
tate cancer cells to bone has also been reported
(103), and targeting the PDGF a-receptor with a
monoclonal antibody dramatically inhibited the
growth of skeletal prostate cancer metastases in an
animal model (104). Evidence has been presented
that in the latter case the PDGF a-receptor is not
activated by ligand binding in a conventional way,
but rather transactivated by an intracellular
mechanism (105).

Does autocrine PDGF stimulation occur in
normal cells?

PDGF isoforms have important functions during
embryonic development. Often the ligand is produced
by epithelial or endothelial cells and acts on nearby
mesenchymal cells in a paracrine manner (2). There
are examples of non-transformed cell types which
both can express PDGF receptors and produce
PDGF, e.g. smooth muscle cells, endothelial cells,
and macrophages (1,2). However, it is not clear
whether normal cells express PDGF receptors and
synthesize PDGF at the same time. If there are such
examples of autocrine PDGF loops also in normal
cells it is likely that they are transient and well
controlled.

Future perspectives

The discovery that the Sis oncogene product is similar
to PDGF-B led to the first demonstration of an
oncogenic autocrine mechanism. Subsequent studies
have shown that autocrine PDGF loops occur in
human tumors, both in e.g. gliomas and sarcomas
where the corresponding normal cell type expresses
PDGF receptors, in epithelial cells that have under-
gone EMT, and in some rare tumors which aberrantly
express the PDGF receptors. Examples of autocrine
mechanisms involving other growth factors and cyto-
kines are also accumulating. Thus, it is likely that
autocrine stimulation is common in tumors.
In addition to autocrine stimulation, PDGF is

involved in paracrine stimulation of normal cells in
solid tumors; PDGF made by tumor cells or other
cells can thus act on pericytes, smooth muscle cells,
and endothelial cells, thereby promoting angiogene-
sis, as well as on stromal fibroblasts and myofibro-
blasts, thereby controlling the interstitial fluid
pressure of tumors (83). Paracrine mechanisms invol-
ving a number of different growth factors and cyto-
kines with trophic effects on tumor cells as well as
non-tumor cells have important roles in the balanced
growth of tumor tissue and in the recruitment of other
cell types to the tumor, including macrophages. Par-
ticularly M2 macrophages are well known to secrete
many different growth factors and cytokines, thus
creating a vicious cycle. The availability of sensitive
and affordable microarray and proteomic techniques
will make it possible in the future to perform system-
atic analysis of autocrine and paracrine mechanisms
in human tumors. Such information will be important
for optimal design of treatment.
Recent work supports the notion that tumor devel-

opment is driven by a subpopulation of cells with self-
regenerating capacity, so-called cancer stem cells.
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Importantly, PDGF-BB has been shown to promote
expansion of neural stem/progenitor cells (106) and to
sustain self-renewal and tumorigenicity of glioma
cancer-initiating cells by preventing oligodendrocyte
differentiation (107). Additional insights into the
effect of PDGF on cancer stem cells are highly
warranted.
The extensive autocrine and paracrine stimulations

that occur in tumors, which are of crucial importance
for the growth and survival of tumor cells, offer
opportunities for selective treatment of tumor patients
by targeting growth factors and their receptors. A few
selective signal transduction antagonists have been
approved for clinical use, and many others are under
testing in clinical trials. It seems likely that such
inhibitors will be useful tools in future treatment of
tumor patients.
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