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Abstract

Background. Previous studies have demonstrated that the high basal pancreatic islet
blood perfusion is crucially dependent on nitric oxide formation. Arginase can inter-
fere with the formation of nitric oxide by limiting substrate availability. The aim of
the present study was to evaluate the influence of arginase on islet blood perfusion in
anasthetized mice.

Methods. The blood perfusion of the pancreatic islets was measured with a micro-
sphere technique in anaesthetized NMRI mice after administration of arginase.

Results: Arginase administration increased both total pancreatic and islet blood
flow to the same degree. Also adrenal blood flow was increased, whereas other organ
blood flow values were unaffected.

Conclusion. Arginase induces a paradoxical increase in pancreatic and islet blood
flow, the reasons for which are still unknown.

Introduction
Nitric oxide is formed from arginine through the actions of nitric oxide synthase
and is the single most important general and local vasodilator in the body (1, 2).
Administration of arginine to healthy volunteers induces formation of nitric oxide
(NO) and decreases blood pressure (3), whereas inhibition of nitric oxide synthase
increases blood pressure (4). Besides nitric oxide synthase also arginase, which
catalyzes the final step in the urea cycle (5–7), competes for arginine.

Arginase is particularly prevalent in the liver, and is released after damage to
hepatocytes, such as seen in ischemia/reperfusion injuries after liver transplantation
(8, 9). Theoretically it could be assumed that this would impair the flow through
vascular beds mainly regulated by NO through substrate depletion (10). However,
administration of arginase to pigs (9) or rats (11, 12) did not affect blood perfusion
in most vascular beds. Indeed, in one study a paradoxical increase in intestinal,
ventricular, splenic and liver blood flow was observed (13).

Intraportal transplantation of islets in humans is usually associated with a tran-
sient increase in transaminase levels (14, 15), which may be due to a so called
IBMIR reaction (instant blood mediated inflammatory reaction) caused by the in-
troduction of foreign material into the blood stream of the portal vein (16, 17).
This reaction is likely to induce cell death in both the implanted islets as well as
in the surrounding hepatocytes, with subsequent local release of arginase. Since
pancreatic islets are very dependent on normal NO production to maintain their
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high blood perfusion, both in normal animals (18, 19) and after transplantation (20,
21) we deemed it of interest to examine if arginase affects the blood perfusion of
endogenous islets.

Materials and methods
Animals
Adult, male NMRI-mice weighing approximately 30 g were purchased from Scan-
Bur B&K (Sollentuna, Sweden). The animals had free access to tap water and pel-
leted food throughout the experiments. The experiments were approved by the ani-
mal ethics committee at Uppsala University, Uppsala, Sweden.

Surgical procedures
The animals were anaesthetized with an intraperitoneal injection of pentobarbital
sodium (60 mg/kg body weight; Mebumal®; Apoteksbolaget, Umeå, Sweden). The
animals were traceheostomized and placed on a thermal pad preset to maintain
body temperature at 37.5–38.0 ºC. Polyethylene catheters were inserted into the as-
cending aorta, via the right carotid artery, and into the left femoral artery and vein.
The catheter in the femoral artery was used to continuously infuse Ringer solution
(6 ml/kg body weight/h) throughout the experiments, and the aortic catheter was
used to monitor mean arterial blood pressure by a transducer (PDCR 75/1; Druck
Ltd., Groby, Leicestershire, UK).
The animals were then injected intravenously with 0.2 ml of either saline alone or
300 IU arginase (Sigma-Aldrich, Stockholm, Sweden) dissolved in saline immedi-
ately before injection. Blood flow measurements were made 20 min later.

Blood flow measurements
These measurements were performed according to a protocol previously described
in detail (22, 23). Briefly, 20 min after administration of saline or arginase, 7 x 104

non-radioactive microspheres (E-Z TracTM; ITM Products, San Diego, CA, USA)
with a mean diameter of 10 µm were injected during 5 sec via the catheter placed
with its tip in the ascending aorta. Starting 5 sec before the microsphere injection,
and continuing for a total of 60 sec, an arterial blood sample was collected from
the catheter in the femoral artery at a rate of approximately 0.20 ml/min. The exact
withdrawal rate was determined in each animal by weighing the sample. After ob-
taining the reference sample, another blood sample was secured for measurement
of blood glucose and serum insulin concentrations. The animals were killed and the
whole pancreas and adrenal glands as well as samples from the duodenum, colon
and liver were removed, blotted and weighed. The tissue samples were then treated
with a freeze-thawing technique to visualize the microspheres as previously de-
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scribed (24). The blood flow values were calculated according to the formula Qorg

= Qref x Norg/Nref where Qorg is organ blood flow (ml/min), Qref is withdrawal rate of
the reference sample (ml/min), Norg is number of microspheres present in the organ
and Nref is number of microspheres in the reference sample. A difference <10% in
blood flow values between the adrenal glands was used to confirm adequate mixing
of the spheres in the circulation.

Measurements of blood glucose and serum insulin concentrations
Arterial blood samples were obtained after securing the reference blood sample and
later analyzed for blood glucose concentrations with a blood glucose meter (Medis-
ense®; Svenska Medisense AB, Stockholm, Sweden) and serum insulin concentra-
tions with ELISA (Mouse Insulin ELISAR; Mercodia AB, Uppsala, Sweden).

Statistical calculations
All values are given as means ± SEM. Probabilities (P) of chance differences be-
tween the groups were calculated with Student’s two-tailed t-test or the Mann-
Whitney rank sum test (SigmaStatR; SSPD, Erfart, Germany).

Results
Arginase did not affect either blood glucose or serum insulin concentrations, but
markedly increased mean arterial blood pressure (Table 1).

Table 1. Measurements were made in pentobarbital-anaesthetized male NMRI-mice
20 min after an intravenous injection of 0.2 ml saline or 300 IU arginase dissolved
in 0.2 ml saline

Substance given Saline Arginase
No of animals 8 9

Body weight (g) 33.6 ± 1.5 32.8 ± 0.8
Pancreas weight (mg) 323 ± 14 307 ± 17
B-glucose (mmol/l)

0’ 8.8 ±1.2 8.1 ± 0.5
20’ 8.1 ± 1.1 8.6 ± 0.6

Serum insulin concentration (ng/ml) 2.87 ± 0.35 3.02 ± 0.40
Mean arterial blood pressure (mm Hg) 79 ± 3 99 ± 6*
Islet blood flow (% of pancreatic blood flow) 0.84 ± 0.16 1.23 ± 0.21
Duodenal blood flow (ml/min x g) 5.35 ± 0.86 7.61 ± 1.47
Colonic blood flow (ml/min x g) 2.16 ± 0.57 2.46 ± 1.08
Arterial liver flow (ml/min x g) 0.11 ± 0.03 0.34 ± 0.13

Values are means ± SEM. * denotes P=0.008 when compared to the saline-injected mice (Student’s
unpaired t-test).
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Both total pancreatic (Figure 1A) and islet blood flow (Figure 1B) increased
after arginase administration. The vascular conductance of the islets was increased
(0.12 ± 0.02 vs. 0.35 ± 0.10 µl/min x g x mm Hg in controls and arginase-treated
rats, respectively, P=0.034), and a similar trend, although not statistically signifi-
cant, was seen in whole pancreatic blood flow (15.1 ± 1.3 vs. 29.3 ± 15.7 µl/min x
g x mm Hg; P=0.072). The fractional islet blood flow, i.e. the fraction of total pan-
creatic islet blood flow diverted through the islets, did not change (Table 1). There
were no effects on duodenal, colonic or arterial liver blood flow (Table 1). Adrenal
blood flow was more than doubled after treatment with arginase (Figure 2).

Discussion
Arginase has a much wider distribution than other urea cycle enzymes, which sug-
gests that it also possesses other important physiological functions, including regu-
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Figure 1. Total pancreatic blood
flow (A) and islet blood flow (B) in
anaesthetized NMRI mice 20 min
after an intravenous injection of
saline (control) or 300 IU arginase.
Values are means ± SEM for 8–9
experiments. * denotes P=0.03 and
** P=0.008 when compared to the
control animals (Mann-Whitney
rank sum test).
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lation of the synthesis of polyamines, proline, glutamate and NO (10, 25). Vascular
tissues express arginase which metabolizes L-arginine to urea and thereby reduces
bioavailability of arginine for nitric oxide formation (6). In line with this, inhibition
of arginase in cultured endothelial cells stimulates NO synthesis (26, 27), whereas
arginase over-expression inhibits NO synthesis (10). It has been suggested that ar-
ginase may modulate or down-regulate NOS activity by substrate competition also
in macrophages (28) and T-lymphocytes (29). That arginase had some effect in the
present study was clear from the increased mean arterial blood pressure, which pre-
sumably reflects a disturbance of NO production in some resistance vessels (6).

The islet blood perfusion is very high in comparison with that of the exocrine
pancreatic parenchyma, and the blood flow to these two compartments is regulated
independently from one another (30, 31). The islet blood flow is affected through
a complex interplay between metabolic and nervous mediators as well as endothe-
lium-derived substances, mainly nitric oxide (NO) (18, 19, 32). The latter substance
has even been suggested to be permissive for the high basal islet blood perfusion
(30). In a previous study we found that administration of arginine did not influence
islet blood flow in itself, suggesting that substrate supply is not normally limit-
ing for NO effects in the islets (33), which also confirms findings in other organs
(11). In the present study, we used a dose of arginase which in other studies has
decreased serum arginine concentrations (12, 13). In spite of this, we saw no major
changes in organ blood flows, besides an increase in adrenal, total pancreatic and
islet blood flow. This is unlikely to be due to the increased mean arterial blood pres-
sure, since we have previously shown that this is well within the interval in which
these blood flow values are autoregulated (34). That also islet blood flow increases,
is surprising in view of the sensitivity of islets to NO (see above). The reasons for
this arginase-induced increase are unknown, but it should be noted that it is intra-
cellular, not extracellular, arginine concentrations which determine the rate of NO
formation (35). Thus, it may well be that the intracellular stores of arginine in the
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pancreas are sufficient to maintain an adequate NO-synthesis during the time span
of the experiment. It should also be noted that a previous study in rats demonstrated
an increase in intestinal, ventricular, splenic and liver blood flow after arginase
administration (13). No mechanism for this increase could be discerned. We could
not see any changes in intestinal blood flow in the present study, which presumably
reflects species differences (see below).

The arginase content of the pancreas and pancreatic islets varies between spe-
cies. Thus, in mice and rats the cytosolic isoform arginase I is preferentially ex-
pressed (36–38), whereas the mitochondrial arginase II is the major isoform found
in human islets (38). There is no arginase II in rodent islets, whereas exocrine tissue
contains weak arginase I and no arginase II (37). Arginase I is widely expressed in
mouse tissues, especially in the upper gastrointestinal tract, and is seen also during
embryonic development in pancreas and is much more pronounced in glandular
cells in early development (39). Studies with Western blots demonstrated that rat
islets and RINm5F cells express mainly arginase I (37). Interestingly, functional
studies have shown that the level of islet arginase activity can regulate the rate
of cytokine-induced NO generation (38). However, no other physiological role of
arginase in the pancreas has been suggested, and it may well be that endogenous
arginase plays a minor role in normal endocrine and exocrine pancreatic function.
In view of this, it is unlikely that intra-islet arginase affects NO availability in the
native pancreas.

An important consideration of the present findings is related to clinical islet
transplantation. These are performed intra-portally, so that islets embolize in small
portal tributaries within the liver (40, 41). This is associated with damage to sur-
rounding hepatocytes, which are prone to release arginase when injured. This can
affect regional blood circulation, e.g. after liver transplantation (9, 42, 43). The
local concentrations of arginase are likely to be much higher around the embolized
islets, but their effects are unknown. It is known that intraportally implanted islets
revascularize within 3–5 days (44), i.e. in a time span when damaged hepatocytes
are present. The present findings suggest that arginase release may not be disadvan-
tageous for graft blood flow, even though this must be proven in a more adequate
model.

The major finding in the present study is that arginase administration causes
only minor effects on the blood flow of most organs studied, but, in view of the
previously demonstrated sensitivity of islet blood flow to NO, paradoxically in-
creased both total pancreatic and islet blood flow to the same degree. The reasons
for this increase are unknown. From a practical point of view the hyperperfusion is
an advantage, since release of arginase from damaged hepatocytes, which is likely
to occur after intraportal implantation of islets, is unlikely to adversely affect the
blood perfusion of the graft.
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