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Abstract
Malignant primary brain tumors, gliomas, often overexpress both platelet-derived 
growth factor (PDGF) ligands and receptors providing an autocrine and/or paracrine 
boost to tumor growth. Glioblastoma multiforme (GBM) is the most frequent glioma. 
Its aggressive and infiltrative growth renders it extremely difficult to treat. Median 
survival after diagnosis is currently only 12–14 months. The present review describes 
the use of retroviral tagging to identify candidate cancer-causing genes that cooperate 
with PDGF in brain tumor formation. 
 Newborn mice injected intracerebrally with a Moloney murine leukemia retrovirus 
carrying the sis/PDGF-B oncogene and a replication competent helper virus devel-
oped brain tumors with many characteristics of human gliomas. Analysis of proviral 
integrations in the brain tumors identified almost 70 common insertion sites (CISs). 
These CISs were named brain tumor loci and harbored known but also putative novel 
cancer-causing genes.
 Microarray analysis identified differentially expressed genes in the mouse brain 
tumors compared to normal brain. Known tumor genes and markers of immature cells 
were upregulated in the tumors. Tumors developed 13–42 weeks after injection and 
short latency tumors were further distinguished as fast growing and GBM-like. Long 
latency tumors resembled slow-growing oligodendrogliomas and contained signifi-
cantly less integrations as compared to short latency tumors. 
 Several candidate genes tagged in this retroviral screen have known functions in 
neoplastic transformation and oncogenesis. Some candidates with a previously un-
known function in tumorigenesis were found and their putative role in brain tumor 
formation will be discussed in this review. The results show that proviral tagging may 
be a useful tool in the search for candidate glioma genes.

Introduction
Brain tumor classification
Gliomas are primary brain tumors and are classified according to the World Health 
Organization (WHO) guidelines (1, 2). The incidence of malignant gliomas is about 
five to ten per 100000 people (3). The main types are astrocytomas, oligodendrog-
liomas, ependymomas and mixed oligoastrocytomas, usually characterized by dif-
ferent histopathology, a procedure first described in 1926, by Harvey Cushing. 

Astrocytomas are divided into four grades after malignancy and account for 
60 % of all primary brain tumors (4). Pilocytic astrocytomas belong to WHO grade 



2 Fredrik Johansson Swartling

I and are circumscribed slowly growing tumors that mainly occur in children or 
young adults. These tumors are often curable if resectable and different in genetic 
profile and clinical behavior compared to the more malignant diffusely infiltrat-
ing astrocytomas. Diffuse astrocytomas (AII, WHO grade II) are slowly growing 
tumors and have a high degree of cellular differentiation. Anaplastic astrocytomas 
(AA, WHO grade III) arise from lower-grade astrocytomas but have increased cel-
lularity and mitotic activity. The most malignant, glioblastoma multiforme (GBM, 
WHO grade IV) is the most common of all brain tumors. 

Characteristic histology of GBM includes nuclear atypia, mitoses, endothelial 
proliferation and/or necrosis (4). GBMs can be either primary, arising de novo 
without previous detection of a low-grade tumor, or secondary, after progression 
from a lower grade astrocytoma to a grade IV tumor. By comparison, primary glio-
blastomas are more frequent and affect older people than secondary GBMs. Brain 
tumors stay within the central nervous system (CNS) and very rarely metastasize, 
in contrast to other malignant solid tumors. 

Oligodendrogliomas are of grade II or III and consist of well-differentiated dif-
fusely infiltrating tumor cells morphologically resembling oligodendrocytes (1). 
Over the last ten years the incidence of oligodendrogliomas has been reported to 
increase from the classic figure of 5% up to 25% of all glial tumors. This change 
is suggested to be caused by mislabeling of some oligodendrogliomas or mixed 
oligoastrocytomas that previously were classified as astrocytomas (5, 6). 

Oligoastrocytomas are clonal tumors, grossly subdivided from their pathologi-
cal and molecular relation to astrocytomas or oligodendrogliomas.

Although they are rare compared to neuroepithelial tumors overall, ependymo-
mas represent the third most common brain tumor in children. Most pediatric ex-
amples arise intracranially whereas ependymomas found in adults are evenly dis-
tributed between the brain and spinal cord. 

Embryonal CNS tumors like the medulloblastoma (MB) and the supratentorial 
primitive neuroectodermal (sPNET) brain tumor are the most common malignant 
pediatric brain tumors. Medulloblastomas are invasive cerebellar neoplasms. The 
sPNETs are entirely supratentorial and often located in cerebrum.

Molecular biology of brain tumors
As has been emphasized in recent reviews (5, 7–10), increased tyrosine kinase sig-
naling and loss of cell cycle control are important hallmarks of gliomas as well as 
cancer in general (11). Genetic analyses have delineated differences in molecular 
alterations between primary and secondary glioblastomas and oligodendrogliomas 
(Figure 1).

Growth factor pathways
Platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) are lig-
ands for receptor tyrosine kinases with essential roles in brain tumor development. 
Other growth factors involved in brain neoplasms are insulin-like growth factors, 
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IGFs (12), fibroblast growth factor 2, FGF2 (13), ciliary neurotrophic factor, CNTF 
(14), hepatocyte growth factor/scatter factor, HGF/SF (15), vascular endothelial 
growth factor, VEGF (16) and transforming growth factor-β, TGF-β (17, 18). 

EGF and other ligands, like transforming growth factor-alpha (TGF-α) activate 
members of the epidermal growth factor receptor family (ErbB/HER1-4). The most 
studied is the epidermal growth factor receptor (EGFR, HER1 or c-erbB1) that was 
early recognized in gliomas (19, 20). Approximately half of GBMs overexpress 
EGFR. About 40% of those tumors express activating deletions of EGFR; most 
often seen is the EGFRvIII type generating a receptor that signals independent of 
ligand binding (21, 22). As suggested in Figure 1, increased EGFR signaling is 
more common in primary GBM (23). Although receptors for PDGF and EGF acti-
vate similar signaling pathways (see Figure 3) they can actually be coexpressed in 
glioma cells (24).

Figure 1. Suggested molecular pathways leading to human glioma formation and progression. The 
genetic alterations are a subset of those found in these tumors that correlate with grade and type of 
tumor. They are presented as activated (red) or inactivated (green) along arrows. LOH: Loss of het-
erozygosity. Adapted from (5).
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PDGF-induced transformation
PDGF is a mitogen of many cell types of mesenchymal origin, like cultured fi-
broblasts and smooth muscle cells. PDGF is also a mitogen of cell types of the 
neuroectodermal origin like glial cells (25–27) and neural stem cells of embryonic 
(28) and adult (29) origin. The family of platelet-derived growth factors consists 
of four members, PDGF-A, -B, -C and -D. Through biosynthesis and processing 
they can form five dimeric isoforms named PDGF-AA, BB, AB, CC and DD (30, 
31). For these disulphide-linked ligands there are two receptor tyrosine kinases, the 
PDGF α-receptor and the PDGF β-receptor that can form three different dimers 
(α:α, α:β, β:β). 

In a matrix of ligand:receptor combinations, ten combinations can form an auto-
crine stimulatory loop necessary for function (Figure 2). Overexpression of PDGF 
ligands and receptors has been suggested to be one of the earliest alterations in sec-
ondary GBM development and found in low-grade astrocytomas and consistently 
in gliomas of higher grade (32–36). Analysis of expression of PDGF ligands and 
receptors in human gliomas suggests that there is an autocrine stimulatory loop in 
almost all gliomas (37). 

The potential of PDGF as an initiator of brain tumors came from the studies of 
the simian sarcoma virus (SSV). The transforming protein of SSV is essentially 

Figure 2. The three known PDGF receptor isoforms (α:α, α:β, β:β) have different binding capac-
ities for the five known dimeric combinations of the PDGF ligands A-D. The possible pair wise 
receptor:ligand combinations are shown (boxes). Only the combinations shown in grey with a plus 
sign will activate an autocrine stimulatory loop.
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identical to the PDGF B-chain (38, 39) and the virus was found to induce glioblas-
tomas when intracerebrally injected in marmosets (40).

Cell cycle regulators
The eukaryotic cell cycle is divided into four phases. G1 is the initial gap phase 
where the cells prepare for DNA synthesis occurring in the S phase. These steps 
are followed by the coordinating gap phase G2 and chromosome separation and cell 
division (mitosis) in the M phase. Transformed cells are damaged in their ability to 
control entry into S-phase allowing for uncontrolled cell growth.  

The cyclin dependent kinase (CDK)-cyclin D/INK4/retinoblastoma (pRB)/E2F 
pathway controls the transition from G1 into S and is altered in about 80% of all 
human neoplasms (41). In GBMs, most of the mutations are seen as deletions in the 
INK4A gene, CDKN2A (42), which encodes the proteins p16INK4A and p14ARF (Fig-
ure 1 and 2). Mutations that inactivate either pRB or p16INK4A or activate cyclic-
dependent kinase 4 (CDK4) or cyclin D induces the expression of S-phase related 
genes by deregulating the transcription factor E2F1. Mitogenic signals activate cy-
clin D-dependent kinases, which phosphorylate pRB and the pRB family proteins 
(p107 and p130). This facilitates entry into S-phase. Overexpression of CDK4 is 
seen in 15% of GBMs (43). In 40% of primary GBM, INK4A/ARF and INK4B on 
chromosome 9 are deleted (42).

Figure 3. Major molecular pathways altered in gliomas. Several pathway elements and signaling 
interactions have been removed leaving a greatly simplified linear presentation. Elements with bold 
letters are activated through overexpression, amplification or activating mutation. Pathway elements 
in grey are frequently inactivated through deletion, mutation or promoter methylation. Adapted from 
(9).
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Forced expression of p14ARF, arrest cells in G1 or induce apoptosis via TP53  en-
coding the p53 protein (44). TP53 is silenced by loss-of-function mutations in 40% 
of GBMs (45). These events (including allelic loss of chromosome 17p that harbors 
TP53) are equally observed in low-grade gliomas, anaplastic astrocytomas and sec-
ondary glioblastomas indicating that this is an early event in the development of 
these tumors. Inhibition of p53, that promotes genomic instability, is also regulated 
and processed by the MDM2/HDM2 (murine/human double-minute 2) protein that 
binds p53 and trigger its degradation by ubiquitylation. Tumors that do not have 
p53 depletion almost always show inactivation of p16 INK4A or p14 ARF instead (7).

Other aberrant signaling in brain tumors
Ras/MAPK (mitogen-activated protein kinase) and PI3K (phosphatidylinositol-
3-kinase)/Akt signaling pathways by tyrosine receptor kinases lead to increased 
growth, metabolism, proliferation and survival (Figure 2). Unlike many carcino-
mas, malignant gliomas do not express mutant Ras (46). The suppressor gene, NF1 
(neurofibromin 1) is lost in neurofibromatosis type I, a common genetic disease 
of variable penetrance, which is characterized by nervous-system abnormalities 
including increased risk of benign and malignant brain tumors. NF1 acts to nega-
tively regulate Ras by obstructing the activation of Sos (47, 48). 

PI3K phosphorylation leads to the formation of PIP3 (phosphatidylinositol-(3,4,5)-
trisphosphate), which recruits proteins with pleckstrin homology domains (like Akt) 
to the cell membrane, where they can be activated. Activating mutations in the PI3Kα 
gene, PIK3CA, occurs frequently in various tumors like gliomas (49, 50). The proto-
oncogene Akt is modulated by tumor suppressor protein PTEN (phosphatase and 
tensin homolog deleted on chromosome 10), a negative regulator of PIP3 (51, 52) and 
found to be mutated in more than 30% of primary gliomas (53). Other pathways of 
cell scatter, migration and cytokine stimulation like PLC-γ (phospholipase C-gamma) 
and JAK-STAT (Janus activating kinase-signal transducers and activators of tran-
scription) forwards cell signals downstream of RTKs (54).

The genes implicated in the genesis of medulloblastomas differ from those 
of gliomas. The two most studied pathways in MBs are sonic hedgehog (SHH)- 
patched (PTCH) and WNT signaling pathways although these pathways can be 
altered in gliomas as well (55). Individuals with PTCH mutations which activate 
the SHH pathway are more prone to get medulloblastomas (56). There is a high 
incidence of colon cancer but also MBs in Turcot’s syndrome (57). This disease 
results from germline mutations in adenomatous polyposis coli gene that encodes 
a protein that regulates WNT. Both expression and tissue microarray studies of hu-
man medulloblastoma show that most of the patient samples express N-Myc (58). 
In addition, N-Myc has shown to be an essential target of SHH signaling (59, 60). 

In most human brain tumor cells, unlimited cell division by telomere lengthening 
can be maintained through expression of the catalytic subunit of telomerase. Many 
gliomas that do not reactivate telomerase yet maintain telomere length suggesting 
an importance of the alternative lengthening of the telomeres pathway (61). 

Solid tumor growth is dependent upon angiogenesis and one of the hallmarks 
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of high-grade gliomas is indeed microvascular proliferation. Necrosis and vascular 
hyperplasia are often seen in the rapidly growing GBMs. Cells in local ischemic 
and hypoxic environments activates the hypoxia inducible factor 1 (HIF-1) which 
activates VEGF receptors and other factors promoting angiogenesis (62). Finally, 
the machinery of DNA damage sensing and repair are most likely targeted during 
transformation.

Epigenetics and microRNAs
Mutation or deletion is not the only way by which a suppressor gene becomes 
inactivated. Modification of the genomic DNA by covalent attachment of methyl 
groups to cytosine bases (CpG islands) may efficiently silence tumor suppressor 
genes (63). These methylations (that do not alter the DNA sequence) often affect 
the promoters of the suppressor genes and are epigenetic mechanisms to control 
gene expression. These methylations can even be maintained during DNA replica-
tion, assisted by maintenance methylases, the enzymes that attach methyl groups 
to cytosine bases (64). The INK4A/ARF suppressor gene locus discussed above is 
deleted in about 40% of GBM samples. However, additionally 20% of the GBM tu-
mors are found with a methylation silencing of the 5’ CpG island of this gene (65). 
Another example is inactivation by methylation silencing of the O6-methylgua-
nine-DNA-methyltransferase (AGAT) gene, MGMT which is associated with good 
outcomes in the treatment of glioma patients (see next chapter). Although these 
examples above concerns regions of hypermethylation it is rather hypomethylation 
that is the common feature of malignant cells. For example, there is a global de-
crease in 5-methylcytosines in human brain tumors relative to normal brain (66). A 
decreased methylation might activate normally silent oncogenes like e.g. PDGF-B. 
A recent report shows that TGF-beta promotes proliferation through the induction 
of PDGF-B in gliomas that have an unmethylated PDGF-B gene (67). In addition, 
hypomethylation might also lead to chromosome destabilization (68).

A microRNA is a small noncoding RNA molecule that targets the mRNA of pro-
tein-coding genes. The first microRNAs were discovered more than a decade ago 
(69). MicroRNAs are evolutionally reserved from plants to humans (70) implying 
that these microRNAs direct essential cellular processes. About 250 microRNAs 
have been reported in the human genome (71) although this is suggested to be a low 
estimation (72). These 18 to 25 nucleotide large microRNAs bind to complemen-
tary or partially complementary sequences of mRNA targets leading to a cleavage 
or a repression of the gene products. In this way microRNAs can control the expres-
sion of oncogenes or suppressor genes in the genome (reviewed in (73, 74). 

Human microRNAs are frequently situated at genomic regions involved in can-
cer (75). Moreover, expression of microRNAs has in an impressive way been used 
to predict the survival outcome of cancer patients (76). The first report of a function 
of a microRNA in glioblastoma patients describes an aberrantly expressed microR-
NA-21 in patient samples that when inhibited is leading to apoptotic cell death of 
treated tumor cells (77). Continued research will probably reveal important mecha-
nisms in tumorigenesis that is controlled by these small RNA molecules.
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Brain tumor therapy
Glioma prognosis
Median survival of anaplastic astrocytomas and GBMs remains poor (2–3 years 
and 12–14 months respectively). Patients with oligodendrogliomas generally show 
a better prognosis and oligodendrogliomas with combination of LOH (Loss of 
heterozygosity) on chromosome arms 1p and 19q often respond better to chemo-
therapy (78) even after recurrence (79). In GBM, TP53 mutations and LOH on 
10q emerge as favorable and poor prognostic factors, respectively. GBMs with the 
combination of LOH on 1p and LOH on 19q are less malignant and could not be 
morphologically distinguished from other GBMs (80). 

Molecular profiling has been shown to correlate better with survival than histologi-
cal diagnosis (81). A recent report classifies high grade gliomas into distinct subtypes 
from their molecular signature and prognosis (82). They further suggest that Akt and 
Notch signaling are hallmarks of survival in high grade gliomas and that the aggres-
siveness of these brain tumors are regulated by similar processes that control forebrain 
neurogenesis. These reports are convincing and suggest molecular profiles instead of 
histopathology to better assign gliomas to particular categories and therapeutic groups. 
The problem today is that clinical departments neither have the equipment nor the per-
sonnel needed to test for such tumor markers routinely; at least not yet.

Glioma treatment
In standard treatment protocols, brain tumor resection and radiation therapy are 
followed by chemotherapy with drugs causing DNA alkylation, like nitrosoureas. 
Standard treatment is a combination of procarbazine, lomustine and vincristine or 
carmustine or temozolomide alone (83). Until recently, the benefit of chemother-
apy following surgery and radiation has been negligible for most GBM patients. 
However a study indicated that GBM patients with a methylated MGMT promoter, 
which is about 45% of GBM cases, benefit from temozolomide treatment (84, 85). 
This case was recently followed up by a randomized, Phase III study including 573 
GBM patients. Patients treated with temozolomide after radiation had a median 
survival of 14.6 months as compared to 12.1 months for patients given radiotherapy 
alone (86). These results made this treatment scheme to become the standard of 
care for patients with GBM and approved in USA and Europe for newly diagnosed 
GBM. 

Almost all treated high grade astrocytoma cases recur and the tumor usually arises 
within 2 cm of the prior resection margin (87). The current treatment strategies for 
recurrent astrocytoma have recently been reviewed (88). Available therapies fol-
lowing progression are considered ineffective with a progression free survival after 
six months (PFS-6) of less than 15%. That is now the commonly used end point to 
assess therapeutic activity in clinical oncology of recurrent glioblastomas (89).

Eventually, effective supportive care of GBM patients is important. Symptom-
atic treatments e.g. cerebral edema treatment with glucocorticosteroids as well as 
rehabilitation and psychological support are necessary.
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New drugs and future therapy
Several new drugs to treat gliomas are currently in clinical trials. The focus is 
mainly on molecular targets like tyrosine kinase receptors and downstream effec-
tors (90, 91). For example, receptor tyrosine kinase inhibitors, like imatinib me-
sylate (Gleevec®) inhibiting PDGF receptors are tested in several clinical studies 
for glioma treatment. Phase II studies with imatinib in monotherapy in recurrent 
gliomas have shown minimal activity (92). However, combination therapy with 
hydroxyurea and imatinib resulted in a 24–32% PFS-6 (93–95). The mechanism 
of this co-operating antitumor activity in some of these patients is unknown. How-
ever, although drugs are able to penetrate the blood-brain barrier, they may not be 
able to target all tumor cells due to the high interstitial fluid pressure in the tumor. 
Imatinib has been reported to decrease this pressure (96) which can enable a more 
efficient drug delivery.

Gefitinib (Iressa®) and erlotinib (Traceva®) are selective EGFR inhibitors enrolled 
in several clinical studies. Only seven (13%) of 53 recurrent GBM patients had PFS-6 
from gefitinib treatment (97) and the drug have shown little effect on cells expressing 
the mutated EGFRvIII. However, erlotinib treatment has shown to have promising 
effects in GBMs where EGFRvIII and PTEN are coexpressed (98).

Bevacizumab is a humanized monoclonal antibody to VEGF that is approved for 
colon cancer in the USA. Bevaciumab inhibits blood vessel formation and has in 
combination with irinotecan shown promising activity; 38% PFS-6 in recurrent grade 
III/IV gliomas (99) and as much as 46% PFS-6 in recurrent GBM patients (100). A 
strong antiedema effect and favorable PFS-6 was also found for the VEGFR inhibi-
tor AZD2171 (cediranib) in recurrent GBM (101) which suggest that antiangiogenic 
agents are indeed likely to play a role in high grade glioma management. 

Further, many promising inhibitors are targeting mTOR, acting downstream of 
PI3/Akt signaling. However, clinical trials suggest that single agent mTOR inhibi-
tors have minimal activity in GBM (102).

No subset of human malignant gliomas has been shown to depend on a single 
oncogene or tumor suppressor. This might reflect the limitations in clinical tri-
als that target only one oncogenic pathway. As many receptor tyrosine kinases are 
known to be coactivated in glioma cells (24) second generation clinical trials have 
to include two or three combinations of inhibitors of these critical signaling path-
ways in glioma. Another approach is to continue combining different molecular-
targeted agents with standard cytotoxic agents (103). 

Several molecules have been successful in preclinical evaluation of brain tumors. 
The targeting of Shh pathway in medulloblastoma with small molecular inhibitors 
dramatically improved the survival of tumor-bearing Ptch mutant mice (104). This 
is only one example of a promising approach in future MB treatment. 

Gene therapy, immunotherapy and e.g. oncolytic viruses that can specifically 
replicate and lyse in tumor cells (105) can be used in glioma treatment. A similar 
strategy of gene therapy using retrovirally transduced lymphocytes to treat patients 
with metastatic melanoma (106) could for example be worth trying.

Strong efforts are made to effectively target tumor stem cells that will be dis-
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cussed in the next chapter. These cells are believed to survive both radiation and 
chemotherapy and can generate new tumor cells during recurrence.

Development of brain tumors
The classic theories of gliomagenesis are based on histological classification, mor-
phological appearance and protein expression patterns of the bulk of the tumor 
cells. The focus has now changed as recent evidence suggests that gliomas may 
arise from a rare cell type with neural stem cell-like properties. These cells are 
those believed to persist after standard glioma therapy which makes them the ulti-
mate targets for novel treatment strategies.

Cells of the brain
The brain is formed primarily during embryogenesis and until shortly after birth. 
The immature cells of the CNS, neuroepithelial stem cells, differentiate into differ-
ent progenitor cells, which subsequently give rise to the three major cell types of 
the brain: astrocytes, oligodendrocytes and neurons (Figure 4). Of the three layers 
of the embryo: endoderm, mesoderm and ectoderm, the latter forms the nervous 
system and the skin. 

In mouse CNS, by embryonic day (E) 8, driven by fibroblast growth factor (FGF), 
the multipotent stem cells of the ventricular zone form radial glial cells (in the inter-
mediate zone) that guide neuronal and glial progenitors as they migrate away into 
the developing cortex (107). By E13, the stem cells become progressively more 
responsive to EGF, self-renew, and give rise to glial restricted progenitors (GRPs). 
By E18, the stem cells are responsive only to EGF and produce PDGFR-positive 
and PDGFR-negative glial restricted progenitors (10).

As neuronal generation and migration are complete, radial glial cells disappear or 
transform into astrocytes. This was thought to be an end process, until it was shown 
that differentiated astrocytes implanted in embryonic brain could dedifferentiate 
to radial glial cells (113). Correspondingly, embryonic cortical tissue implanted in 
an adult host produced new radial glial cells generated from the differentiated glial 
cells of the host adult brain (114). Suggested proteins required for this transforma-
tion are neuregulin 1 and erbB2 in concert with Notch signaling (115). Although a 
controversial issue, astrocytes are currently defined as stellate cells that contain the 
glial acidic fibrillary protein, GFAP (116). In addition, astrocytes are also derived 
at later stages from migratory progenitors from the dorsolateral subventricular zone 
(SVZ) (117). 

The adult subventricular zone (118), the dentate gyrus (119) and the subcortical 
white matter (120) harbor residing neural stem cells. The SVZ lines the lateral ven-
tricles of the forebrain and contain three main cell types: multipotent B astrocytes, 
A neuroblasts and type C precursor cells. The B cells are GFAP positive, bona 
fide SVZ stem cells that give rise to fast-cycling proliferating C cells that in turn 
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generates migrating A neuroblasts. The latter migrate away and settle down as new 
neurons in the olfactory bulb (118, 121).

In cerebellum, sonic hedgehog (Shh) protein regulates the self-renewal and the 
differentiation of the precursors of cerebellar granule cells. Similarly, Shh is both 
necessary and sufficient for oligodendrocyte induction in the spinal cord. Most 
oligodendrocytes, the myelinating cells of the brain, derive from restricted periven-
tricular germinal regions of the neural tube (122). By E12.5 the first oligodendro-

Figure 4. Linear relationship between cell types that could be the cells of origin for gliomas. Simpli-
fied overview that illustrates the increasingly recognized complexity of cellular differentiation during 
CNS development. Neuroepithelial stem cells generate linage-committed progenitor cells. Glial-re-
stricted precursors (GPRs) are believed to generate oligodendrocytes and astrocytes whereas neuron-
restricted precursors (NRPs) differentiate into neurons of different kinds (108). However, another line 
of investigation suggests that oligodendrocytes are more closely related to neurons (than they are to 
astrocytes) and there is an ongoing discussion of the existence of an oligodendrocyte-neuron precur-
sor cell not represented in this scheme (109-111). Identification of other linage-restricted precursor 
cells, like astrocyte-restricted precursor cells, is of considerable interest. Curved arrows indicate self-
renewal and question marks and broken lines indicate relationships that have yet to be confirmed. 
OPC: oligodendrocyte progenitor cell. Adapted from (112).
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cyte progenitor cells (OPCs) defined by expression of PDGFRα, Olig2 and Sox10, 
start to migrate away from the ventricular zone to colonize the gray and white mat-
ter. In addition, in the adult SVZ a recent report shows that B cells not only generate 
neurons but also new OPCs that give rise to oligodendrocytes (123). NG2 (chondri-
otin sulphate proteoglycan 4, neuron-glial 2) has been a reliable marker for OPCs, 
particularly when used in combination with PDGFRα (124, 125). About 8–9% of 
the adult brain consists of NG2-positive oligodendrocyte progenitors.

Glioma cell origin
When neural stem cells, with the capacity of self-renewal and differentiation into 
mature astrocytes and neurons, were found in the adult brain, an unexpected plas-
ticity of the adult rodent and human brain was revealed (119, 126). The general 
view is that the origin of glioma is an early glial progenitor. These cells are pre-
dominantly localized in the subventricular zone or the dentate gyrus of the hippo-
campus. These regions seldom harbor any brain tumors in patients. However, the 
great proliferative and migratory capabilities of theses stem cells predict that tumor 
formation could occur anywhere. 

GBMs are often heterogeneous, having both immature and differentiated areas. 
Among brain tumors, mixed oligoastrocytomas consist of areas containing cells 
that either resemble oligodendrocytes or astrocytes. Reports have observed loss of 
heterozygosity (LOH) of 1p and 19q in both of these areas, suggesting that both 
types of cells derived from a single precursor (127).

Several groups have identified stem-like cells in cultures of brain tumor patients 
(128–130). Interestingly, Singh et al. describe of an isolation of tumor cells express-
ing a CD133 cell surface marker (131). As few as 100 of these cells can, if serially 
transplanted into a nude mouse brain, reinitiate tumor growth and provide an exact 
recapitulation of the tumor from the patient. CD133-negative cells on the other hand 
can not induce brain tumors despite using as many as 105 cells. Remarkably, the 
method to sort out CD133 positive cells and use them as initiating tumor cells could 
be applied for medulloblastomas, glioblastomas and also ependymomas (132).

There is also a recent report where stem-like cells (B cells) express both PDGFRα 
and GFAP and are found to induce glioma-like lesions in adult mice treated with 
PDGF that might support this theory (29).

Replicating early glial cells, especially oligodendrocyte progenitor cells, are 
present in adult brain (133–135). These cells express PDGFRα (136) and are found 
in great numbers in the developing CNS. They have the ability to differentiate into 
oligodendrocytes (137, 138) but can be kept in a proliferating step in vitro by addi-
tion of PDGF together with FGF2 (139). A recent report describe that these NG2 
cells generate tumors in adult rat white cortical matter upon retroviral infection with 
a shorter form of the PDGF-B ligand (140). However, the infected cells do not consti-
tute all cells in the tumors as they recruit other progenitors in a paracrine fashion. The 
expression of PDGFRα as well as NG2 is often found in brain tumors (141). 

Both transformed neural stem cells and OPC cells would indeed be able to cre-
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ate all kinds of glioma types, including astrocytomas, oligodendrogliomas, mixed 
oligoastrocytomas as well as secondary glioblastomas (142). It is from these cell 
types crucial to sort out genes that are required for tumor formation. For example, 
a recent report stresses the importance of the Olig2 transcription factor and its re-
quirement for glioma formation of Ink4a/Arf−/−EGFRvIII neurospheres (143). 
When using the similar EGFR-driven orthotopic transplantation model (144), the 
Polycomb group gene and epigenetic silencer Bmi1 was reported to delay glioma 
development in vivo (145) when knocked out in Ink4a/Arf-deficient cells. Other 
examples include bone morphogenetic proteins like BMP4, that trigged a signifi-
cant reduction in the neural stem-like, tumour-initiating precursors and abolished 
the capacity of transplanted human GBM cells to establish intracerebral GBMs in 
mice (146). 

The origin of most medulloblastomas is thought to be the external granular layer 
(as discussed in (147)). However, recent evidence suggests that desmoplastic and 
classic MBs may have different origin (148). The desmoplastic but not the classic 
type is expressing similar markers as granule neurons. Hence, classic MBs are sug-
gested to originate from the ventricular zone of developing cerebellum; the zone 
which contains multipotent stem cells (149).

Several reports have presented the astrocyte as a more plastic cell than previ-
ously thought, in fact suggesting it as a neural stem cell in disguise (150). The cell 
of origin of brain tumors is not known and one might envisage how appropriate 
mutations can lead to dedifferentiation of a mature astrocyte into a more immature 
state and generate a proliferating and migrating glioma clone. This theory is e.g. 
supported by a model where differentiated astrocytes were converted to a more 
undifferentiated state through retroviral transfection of EGFR activation and Ink4a/
Arf loss in order to develop gliomas in mice (144). Committed glial progenitors 
can reacquire stem cell-like properties under certain conditions (151). In addition, 
a recent report presents that pluripotent stem cells can be generated from a few ge-
netic changes in differentiated fibroblasts (152). Several important genes involved 
in cancer stem cell maintenance and “stemness” have been identified in the tumors 
of the nervous system (reviewed in (153)).

Viral tumorigenesis
Studies of the RNA and DNA viruses that cause tumors in animals and humans 
have contributed immensely to the understanding of cancer biology. Transforming 
retroviruses carry oncogenes derived from cellular genes. DNA tumor viruses en-
code oncogenes of viral origin that are essential for viral replication and cell trans-
formation. SV40 (simian virus 40) is probably the most studied member of DNA 
virus belonging to the family of polyomaviruses. These viruses express T antigens 
that have been useful in identifying targets of cellular transformation in humans. 
The discovery of viral oncogenes (v-onc genes) and the realization that they were 
derived from cellular genes called proto-oncogenes (c-onc genes) provided strong 
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clues to explain the role of c-onc genes in other types of tumors. Many genes, in-
cluding Ras, Abl, ErbB, and Myc, all first identified as v-onc genes, are now known 
to be activated in certain types of spontaneous tumors (154).

Retroviruses
The first reports of oncoretroviruses came in 1908 from Ellerman and Bang regard-
ing avian leukosis and a few years later from Rous from studies of poultry sarcomas. 
Both groups showed that cell-free-filtrates from neoplasms of sick animals could 
induce new tumors when transferred to healthy animals. The family of retroviruses 
is subdivided into seven genera (155). The genome of simple retroviruses consists of 
three regions, gag (group specific antigen), pol (polymerase) and env (envelope). All 
retroviruses have the unusual reverse transcriptase (RT) reversely transcribing viral 
RNA into DNA (first described in 1970 (156, 157)) but also an integrase, necessary 
for integrating the virus into the host genome. When integration is completed, in the 
“proviral” state, the viral genes are flanked by two identical LTRs (long terminal re-
peats). Then the virus uses the host cell machinery to generate new viruses.

Regarding pathogenesis, oncoretrovirus could be subdivided in two groups; 
acutely transforming retroviruses, carrying oncogenes that induce fatal disease within 
approximately 2–3 weeks of infection and slow transforming retroviruses, generating 
tumors after a latency period of 3–9 months (158). Together with mouse mammary 
tumor virus (MMTV) inducing mammary carcinomas in mice, avian leukosis virus 
(ALV) and murine leukemia virus (MLV) are the most studied slow transforming 
viruses inducing lymphomas and erytholeukemias in birds and rodents, respectively. 

With respect to their tropism, infections of retroviruses are limited to those cells 
that express the receptors recognized by the viral envelope protein. For example, eco-
tropic murine leukemia viruses infect murine cells, but not cells from other species 
whereas xenotropic viruses can only propagate in non-murine cells. Amphotropic or 
polytropic viruses are capable of infecting human, mouse or other cells (159). 

The entry of ecotropic murine leukemia virus into cells requires the interaction of 
the envelope protein (Env) with its receptor, mouse cationic amino acid transporter 
1 (mATRC1) (160). The corresponding gene encoding the receptor for ALV is tv-a, 
tumor virus A (161). In mouse cells infected with MLV, integration of viral DNA 
and production of viral proteins occur only after the cells traverse mitosis. Access to 
nuclear DNA is required but not reachable in arrested cells. Viral replication inter-
mediates gain access to the nuclear DNA when the nuclear membrane is disrupted 
during mitosis (162).

Insertional mutagenesis
When transcriptional elements contained in the retrovirus activate a nearby cellular 
oncogene through effects on promoter, enhancer or posttranscriptional regulatory 
elements (Figure 5A–C), the host cell may undergo malignant transformation. Pio-
neering studies of ALV-induced bursal lymphomas showed that the majority of the 
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tumors contains a provirus integrated in the vicinity of the c-myc proto-oncogene 
and express high levels of c-myc (163). Because retroviral integration is monoal-
lelic (occurs in only one copy of a chromosome pair), inactivation of a tumor sup-
pressor gene is far less frequent (159) (Figure 5D).

Gene activation by retroviral integration
When a provirus integrates near a gene controlling growth and alters its expression, 
the host cell may have a selective growth advantage (154). Such a cell will clonally 

Figure 5. Schematic illustration of retroviral insertional mutagenesis. Different modes of proviral 
activation of Gene 1 and Gene 2 in hypothetical loci in the host cell genome. The unfilled parts of 
the first exons of the genes represent promoter regions. Integrating proviruses are depicted with two 
long terminal repeats (LTRs). Arrows denote transcriptional start sites. The thickness of the arrows 
represents levels of induced expression. A. Viral enhancer activation. The 5’ LTR to the right usually 
provides a stronger enhancer effect than the 3’ LTR. B. Viral promoter insertion activation. Either of 
the LTR promoters can drive transcription of the target gene. When the 5’ LTR is used, splicing of 
viral sequences onto a target gene exon can sometimes be observed. C. Post-transcriptional dysregu-
lation. Activation by enhancement from loss of potential RNA-destabilizing motifs. D. Gene trunca-
tion (gene I) or insertional activation (gene II). Different transcripts are likely to occur (not shown). 
Enhancer functions of viral LTRs are belived to decrease with increasing distance but are most likely 
active in the cases B-D as well. Adapted from (159)
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expand and be enriched in a tumor population. The time required for this event as 
well as the requirement for additional genetic changes influences the latency pe-
riod required for transformation by this mechanism. Cloning of this provirus and 
adjacent cellular DNA can identify this gene. If different tumors are compared, one 
could be able to find common insertion sites (CIS), repeatedly targeted by provi-
ruses and more likely to harbor genes involved in tumorigenesis. The described 
scenario is normally a rare event and requires that enough cells become infected, in 
practice a sufficient virus titer.

The mode of retroviral integration has been debated as human immunodeficiency 
virus (HIV) was reported to favor integration “hot spots” in the genome (164). This 
issue was further addressed in a comparative study on murine leukemia virus (165). 
A distinct pattern of integrations could be found. Most often MLVs were integrated 
near transcriptional start sites of actively expressed genes in the genome. However, 
no hot spot regions could be found even for HIV, which integrated within transcrip-
tional units somewhat randomly over the genome. A follow up report investigated 
the non-selected MLV integrations in detail (166). With the criteria used to define 
common insertion sites in many high-throughput screens to find cancer-causing 
genes, several CIS were found from non-selective integrations. In this way nearly 
two thirds of genes within a CIS with only two MLV integrations can be explained 
by natural retroviral site biases (based on 1200 integrations). Similarly, 20% of CIS 
with three MLV integrations would be false. However, CIS with more than 4 inte-
grations would seldom be false positive here. There are other statistical approaches 
to find CISs from a substantial number of retroviral integration sites in noisy and 
biased environments (167). Such sophisticated methods correct for the increased 
probability of finding false CISs and have recently been used in a multidimensional 
analysis to indicate the presence of several cooperating oncogenes in retroviral 
screens (168).

High throughput screens to find cancer causing-genes
To reveal sites repeatedly targeted and avoid biases of too few samples, a large 
amount of tumors have to be screened. The almost complete information of the 
mouse genome sequence and rapid methods for cloning render high-throughput 
screening of hundreds of tumors possible. Several examples of such extensive ex-
periments identifying genes in more than 150 CISs have been reported in mouse 
models of lymphoma and leukemia (169–171). A few studies describe viruses in 
human anogenital and liver carcinomas (172, 173) and suggest that identified pro-
viral integration sites are not a coincidence. 

The first high-throughput screens using retroviruses carried out in models of 
solid tumors was the tagging of glioma-causing genes (174) in our MMLV/PDGFB 
brain tumor model. According to current genome sequence databases, it identified 
66 common insertion sites. A common insertion site was defined as a site where 
two, three, or more than three insertions were located within a maximum of 30, 
50 and 100 kb, respectively. However, some previous studies have detected retro-
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viral insertions in mouse mammary tumor virus-induced carcinomas (158). Most 
recently, a large screen identified 33 common insertion sites in candidate breast 
cancer oncogenes in MMTV-induced mouse carcinomas (175). In this paper, all 
tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies 
(including the MMLV/PDGFB-induced gliomas) were compared to show that both 
viruses target mostly different genes suggesting distinct cancer pathways in dif-
ferent tumor types. A new promising technique to screen for cancer-causing genes 
in solid tumors involves the use of retrotransposons (176, 177). Sleeping Beauty 
transposons act as somatic insertional mutagens and have identified common inser-
tion sites in various somatic tissues (reviewed in (178)).

Most screens of these candidate cancer genes have been published in the ret-
roviral tagged cancer gene database (http://rtcgd.ncifcrf.gov) (179). The database 
supplies the majority of the retrovirally tagged genes published so far. It is updated 
frequently and also contains the majority of genes targeted by the retrotransposon 
tagging technique.

Mouse models of human cancer
Differences between human and mouse tumors
When mimicking human brain tumors in mice it is important to consider the exist-
ence of species differences. About 30% of laboratory rodents as well as humans 
have cancer in the end of their lifespan (2–3 years and 70–80 years respectively). 
However, humans undergo about 105 more cell divisions in a lifetime because they 
are 3000 times larger and live longer (180). Thus, development through evolution 
has created a greater intrinsic antineoplastic protection for humans. Some differ-
ences could be explained by the seven times higher metabolic rate and the poorer 
capacity of the liver to neutralize many carcinogens found in the mouse (181). 

Fewer alterations of oncogenes and tumor suppressor genes are required in mice 
to transform cells into neoplasm in vitro and in vivo (182, 183). Furthermore, in 
vitro culturing of murine cells will often lead to spontaneous immortalization (184). 
This could in the mouse cells partly be explained by an overall higher level of tel-
omerase, that enzymatically lengthens the telomeric ends. Here, the telomeres are 
substantially longer, preventing cells in vitro to enter replicative senescence that 
normally occurs in human cells, at late passages. The contribution of the p53 tumor 
suppressor pathway to human cell senescence is minor compared with its central 
role in murine cells. In human cells INK4A is the key governor of senescence 
instead (185). Despite of these differences several improved murine models of hu-
man tumors have been generated that could be exploited to understand how human 
cancers arise. By using the laboratory mouse several putative human oncogenes 
have been found. Relevant mouse models are important tools in evaluating better 
anti-tumor therapies.
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Brain tumor models
Besides conventional transgenic/knockout models or xenotransplants of brain tu-
mor cells, several brain tumor models mimicking sporadic tumor formation are 
now available (Table 1). In the mouse models, somatic mutations can be induced 
in a tissue specific and time-controlled fashion (186). For induction of such tumors 
either conditional genetically engineered models or somatic cell gene transfer can 
be used. In both, a normal microenvironment is able to respond to and interact with 
the transformed cells which also occur in the naïve disease. With a few exceptions, 
conventional knockouts and transgenic models with an initiating mutation present 
in all cells of the body are more suitable to mimic cases of familial brain tumors (or 
when looking at cooperating events for tumor progression).

A number of studies on somatic cell gene transfer have dealt with retroviral gene 
delivery with replication competent ALV splice acceptor (RCAS) vectors. These 
vectors with an inserted oncogene of interest are used to infect transgenic mice ex-
pressing the t-va receptor under the control of a cell-specific promoter (203). Two 
published promoters available in RCAS/TVA glioma models are for glial fibril-
lary acidic protein (GFAP) expressed by most astrocytes or nestin (Nes) expressed 
in immature cells like neuroepithelial stem cells and glial progenitors. Transgenic 
models or the use of other type of viral vectors, perhaps in combination with Cre 
recombinase inducible systems, are used in other glioma models. Several onco-
genes and/or suppressor genes previously found in human gliomas have been used 
to induce gliomas of both low and high grades in these systems (Table 1).

Glioma models involving PDGF
Malignant neoplasms resembling human GBMs or primitive neuroectodermal tu-
mors (PNETs) has been induced by a recombinant moloney murine leukemia virus 
encoding the PDGF B-chain (198). A combination of autocrine growth stimulation 
and insertional mutagenesis is believed to generate these tumors. Consistent nestin 
expression suggests an origin from an immature neuroglial progenitor. Decreased 
latency in the generation of malignant GBMs was found when Trp53 and Ink4a/Arf 
null mice were used for virus injection (204).

In the RCAS/TVA system, PDGF autocrine stimulation induced oligodendro-
gliomas and oligoastrocytomas from neural progenitors and astrocytes in wild type 
mice (191). Infection of Ink4a/Arf null mice with the same PDGFB virus generated 
more malignant high-grade tumors. By removing inhibitory regulatory elements in 
the PDGFB mRNA, protein expression can be substantially increased. Such a short 
form of PDGFB was expressed using the RCAS/TVA system and glial tumors with 
shortened latency, increased cellularity, regions of necrosis, and general high-grade 
character developed (205). This supports the view that PDGF have dose-dependent 
effects in gliomagenesis.

This shorter PDGF construct was recently used in a model where retrovirus was 
injected in the subcortical white matter of adult rats (140). Gliomas of high grade 
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Table 1. Examples of murine models of human gliomas.

Tumor1 Suppressor gene2 Oncogene3 Cell affected Reference

AII V12Ha-Ras GFAP positive Ding (187)

Nf1+/- and p53+/- 4 all cells Reilly (188)

v-src GFAP positive Weissenberger (189)

OII Arf-/- all cells Kamijo (190)

PDGFB nestin positive Dai (191)

v-erbB S100b positive Weiss (192)

V12Ha-Ras
EGFRvIII

GFAP positive Ding (193)

OAII Ink4a/Arf+/+ or 
Ink4a/Arf-/-

PDGFB

V12Ha-Ras
EGFRvIII

GFAP positive

GFAP positive

Dai (191)

Ding (193) 

AA V12Ha-Ras GFAP positive Ding (187)

V12Ha-Ras
Ad:EGFRvIII

GFAP positive Wei (194)

Ptenf/f V12Ha-Ras GFAP positive Wei (194)

Nf1+/- and p53+/- 4 all cells Reilly (188)

v-src GFAP positive Weissenberger (189)

pRb, p107, p130 GFAP positive Xiao (195)

Ink4a/Arf-/- EGFR astrocyte or  
progenitor cells

Bachoo (144)

PyV-mT GFAP positive Holland (196)

AO Ink4a/Arf-/-
Ink4a/Arf-/-
or p53-/-

PDGFB
v-erbB

nestin positive
S100b positive

Dai (191)
Weiss (192)

GBM K-Ras + Akt nestin positive Holland (197)

PDGFB mixed brain cells Uhrbom (198)

PDGFB adult progenitors Assanah (140)

Nf1+/- and p53+/- 4 all cells Reilly (188)

Nf1+/- and p53+/-5 GFAP positive Zhu (199)

 Arf-/- or  Ink4a/Arf-/-

Ink4a/Arf-/-

K-Ras

Ros5,6

nestin or GFAP  
positive 
mixed brain cells

Uhrbom (200, 201) 

Charest (202)

1 tumor type repeatedly found; 2deleted or inactivated; 3overexpressed or activated; 4 in cis; 5 in Cre-
expressing cells; 6Ros: ROS fusion tyrosine kinase, FIG-ROS; AII: diffuse low-grade astrocytoma 
(WHO II); OII: oligodendroglioma; OAII: oligoastrocytoma; AA:  anaplastic astrocytoma (WHO III); 
AO: anaplastic oligodendroglioma (WHO III); GBM: glioblastoma multiforme; Nf1: Neurofibromin, 
type I; PyV-mT: Polyomavirus middle T antigen; pRb: Retinoblastoma; Kras: Kirsten rat sarcoma 
viral oncogene; v-src: Rous sarcoma virus; Ad: Adenovirus; f/f: flox/flox inactivation of gene from 
Cre recombinase expression.
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developed only 14–20 days after injection but only 20% of cells in the brain tumors 
had been infected. This suggests that PDGF caused a massive expansion of both 
infected and uninfected glial progenitors via autocrine and paracrine stimulation.

Glioma-like lesions were also induced as PDGF-AA was infused in the SVZ of 
adult mice (29). PDGFRα positive stem cells (B cells) were targeted and stimulated 
to proliferate. The cells showed an addiction to the growth factor as their prolifera-
tion ceased when PDGF-AA delivery was stopped.

Glioma models involving other cancer genes
In the RCAS/TVA model, transfer of polyomavirus middle T antigen was found to 
generate high grade astrocytomas (196). Neither activated Ras nor activated Akt 
alone was found sufficient to induce gliomas. Only the combination of theses two 
proteins induced glioblastomas in nestin- but not in GFAP-expressing cells (197). 

A transgenic model of activated Ras (V12-Ras) gave rise to rapidly growing 
malignant astrocytomas without Akt activation (187). Here, GFAP-expressing as-
trocytes were targeted and alterations in p16Ink4a and p19Arf were found as well as 
high levels of CDK4 and MDM2. Possibly, mutant Ras (in (187)) is sufficient to 
induce tumors due to expression (and tumor initiation) during embryogenesis as 
compared to the mice in RCAS/TVA model (197) where the expression of Ras is 
induced postnatally. A recent report shows that additional Pten inactivation in the 
transgenic Ras model will potentiate high grade glioma formation (194).

Kras activation and Ink4a/Arf loss may act together in gliomagenesis since these 
alterations generated GBM in both astrocytes and progenitor cells (201). Increased 
malignancy were found from Pten depletion in a model where inactivation of the 
suppressor gene pRb (together with p107 and p130 inactivation) generated astrocy-
tomas from GFAP expressing cells (195). EGFR activation and Ink4a/Arf loss have 
been found to generate gliomas from differentiated astrocytes (144). 

To mimic brain tumors developed in patients with mutated NF1 (neurofibromin 
1), transgene mice lacking Nf1 was crossed with heterozygous Trp53 knock out 
mice. Mice that harbored Nf1 and Trp53 (both genes located on chromosome 17) 
in cis position were selected. They developed tumors with features of astrocytoma 
progression (from grade II to grade IV) after inactivation of the wild type allele by 
LOH (188). 

From these models several roles of the genetic mutations found in human gliomas 
have been confirmed. Further, several of these models could prove useful to assess 
therapeutic strategies to treat human tumors. For this purpose, bioluminescence 
imaging could be used to monitor tumor progression. In for example a genetically 
engineered RCAS/TVA glioma model (206) the bioluminescence correlates with 
the number of tumor cells because the gene encoding luciferase is controlled by the 
human E2F1 promoter. In these mice, the E2F1 promoter mediates tumor-selective 
expression probably as a result of loss of the pRb pathway. 

Cancers arising in the conditional mouse models described above are histologi-
cally and genetically accurate. The models are however critizied by people using 
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xenografed tumor models for being less heterogeneous than the clinical disease. 
This is because the genetically engineered mouse tumor is often caused by a single 
(or a few) genetic lesion(s). If these models are used for drugs that target such a 
particular lesion, they might yield exciting results. That might of course not neces-
sarily be translated into the clinic. For example, activating mutations of Ras, often 
used in the mouse models, are seldom found in human gliomas. By contrast, cells in 
xenografted models have the disadvantage of being exposed to selection pressures 
when cultured in vitro. In addition, these tumor cells do not have an environment of 
stromal components, inflammatory cells and vasculature represented in the original 
tumor from the patient.

Screening for candidate brain tumor genes
High-throughput retroviral tagging, as a means of identifying candidate cancer-
causing genes, has almost entirely been studied in hematopoietic tumors. A PDGF-
encoding retrovirus was used to initiate malignant brain tumors 13–42 weeks after 
intracerebral injection into newborn mice (174, 198) . The long latency period to 
generate these tumors probably reflects the inability of MMLV/PDGFB to trans-
form cells directly and the need for multiple cooperative changes to induce the 
tumors. The underlying hypothesis was that tumors were generated by autocrine 
growth stimulation and proviral insertional mutagenesis. 

From 108 brain tumors, 647 proviral integrations gave 66 common insertion 
sites (174) (CIS; loci targeted in two or more tumors). These CIS were termed 
Brain tumor loci (Btl). The list of all MMLV/PDGFB-tagged genes is available in 
the retroviral tagged cancer gene (RTCG) database (http://rtcgd.ncifcrf.gov) (179).

Several genes had previously been found to be associated with transformation 
or oncogenesis, providing proof of concept of the model of retrovirally induced 
gliomagenesis. These Btl genes were Ddr1, Trp53, Fancc, Rad51l1, Eef1a1, Gli1, 
Fos but also Ccnd1 (see the RTCG database). Whereas the case for these genes in 
neoplasia is strong, the majority of genes tagged encode proteins with previously 
unknown involvement in malignancies or PDGF signaling. Strikingly, the entire 
family of nuclear factor I (NFI) DNA-binding protein genes were tagged by eight 
integrations (in total). Other genes belonging to protein families, like the presenilin-
like proteases, Sppl2b and Sppl3, and two members of Rhesus family of ammonium 
ion transporters, Rhbg and Rhcg, were also tagged. The role of these gene families 
in transformation and oncogenesis remains to be elucidated.

The clinical trials of gene therapy for X-linked severe combined immunodefi-
ciency (XSCID) patients further highlights the oncogenic potential of retroviral 
tagging (207, 208). Eight out of eleven children were successfully treated but three 
developed clonal T cell leukemias. In these three cases tumorigenesis was caused 
by insertional mutagenesis as vector integration occurred within the LMO2 locus, 
which codes for a known human T cell oncogene. These drawbacks of gene therapy 
have forced researchers to generate better gene therapy vectors that are less prone 
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to cause insertional mutagenesis. As retroviral insertional mutagenesis that eas-
ily could generate cancer in a few human patients, demonstrate how effective this 
technique is.

Most of the brain tumors induced by MMLV/PDGFB resembled human glio-
blastoma multiforme (GBM) but also a number of oligodendrogliomas of grade II 
and III were found. MMLV/PDGFB-injected wild type mice that developed oligo-
dendroglioma-like tumors of lower grade had a prolonged survival in comparison 
to mice that developed GBM. 

Expression analysis using multigene cDNA arrays confirmed several similarities 
of the mouse gliomas with human brain tumors (209). Both known and novel genes 
that could be involved in progression or act as putative tumor markers of the tumor 
types were found to be differentially expressed. Array and quantitative real-time 
PCR (qrt-PCR) analysis also revealed a similar profile of Pdgfr  and the retrovi-
rally tagged genes Abhd2, Ddr1, Fos, Ng2, Ppfibp1, Rad51B and Sulf2 displaying 
increased expression in normal newborn brain and highly elevated expression in 
the brain tumors compared to normal adult brain. Other Btl genes, like Plekhb1, 
Prex1, Prkg2, Sox10 and 1200004M23Rik were highly upregulated in the tumors 
but had a different expression profile than Pdgfr . Finally, Rap1gap, Gli, Neurl and 
Camk2b were downregulated in the tumors compared to normal brain.

Concordant with previous studies, Pdgfr  expression was highly expressed in 
both mouse oligodendrogliomas and GBMs although the level of expression varied 
between individual tumors. When PDGF overexpression instead was specifically 
restricted to nestin-expressing neural progenitors and glial fibrillary acidic protein- 
(GFAP) expressing astrocytes, exclusively oligodendrogliomas of both low and 
high grade were reported (191). This finding indicates that PDGF overexpression 
without additional spontaneous or insertional mutations yields low-grade oligoden-
drogliomas. One might then argue that the long-latency, slowly growing tumors 
of the current study develop through a similar mechanism. Interestingly, signifi-
cantly more insertions in Btls were found in early (fast growing) tumors than in the 
long-latency slowly growing tumors. Worth mentioning is that 5–10% of MMLV/
PDGFB-infected mice lacking Trp53 or Ink4a/Arf and 40–45% of the wild type 
mice did not develop any brain tumors (204).

In transgenic mice with an overexpressed PDGFB gene driven by the myelin 
basic protein (MBP) promoter, hypercellularity of oligodendrocyte precursors 
were found, but no brain tumors (210). By contrast, an elevated PDGFB expres-
sion caused by removing inhibitory elements in its mRNA could after i.c. injection 
after birth induce glial tumors of a higher grade of malignancy (205). Apparently, 
the levels of PDGF expression for transformation and progression are important in 
this system.

In addition, the expression analysis of the brain tumors showed that genes and 
proteins of the oligodendrocyte lineage were frequently activated. Nestin, Sox10, 
Olig2 and Ng2 were only a few examples of genes that are known to be expressed 
in OPCs that were elevated in both mRNA and protein levels. 

A recent investigation of gene expression in neural stem cells (using a similar 
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cDNA microarray set) compared stem cells treated with FGF-2 kept in a dediffer-
entiated state with stem cells induced for differentiation in the absence of growth 
factor or from PDGF-AA stimulation alone (211). Intriguingly, when the transcrip-
tional profile of FGF2-treated stem cells was compared with the profile of MMLV/
PDGFB induced brain tumors a good correlation of gene expression was revealed. 
In addition, the majority of genes overexpressed in early GBM-like tumors were 
downregulated in differentiated neural stem cells. Moreover, the results sorted out 
genes that were differentially expressed in malignant PDGF signaling in the brain 
tumor cells from genes expressed in normal stem cells. 

It is tempting to speculate about the origin of the mouse brain tumors and the 
cancer stem cell theory. For example we found several tagged genes that have a 
direct role in stem cell state maintenance. Besides the tagged genes Gli1 and Trp53 
that are known regulators of normal or cancer stem cell renewal (212, 213), Ncor2, 
a gene tagged by five MMLV/PDGFB integrations, were recently reported to in-
hibit gliogenesis and keep neural cells in a stem cell state (214). 

So far two Btl genes have been reported in further studies of glioma devel-
opment and progression. Using the RCAS/tva system (described above) the GAP 
domain of P190RhoGAP have been found to decrease PDGF-induced brain tu-
mor formation (215). P190RhoGAP which was targeted by retroviral integrations 
(within the gene) in three of the MMLV/PDGFB-induced mouse gliomas (174) 
showed a tumor suppressing role by inhibiting Rho activity. Similarly, the Sox10 
gene, tagged five times (with all integrations located upstream of the gene) in the 
MMLV/PDGFB-induced gliomas, was found to enhance PDGF-induced brain tu-
mor formation (by using the RCAS/tva model) and shown to have a broad distribu-
tion in human gliomas (216).

The roles of several other Btl genes in glioma formation are currently investi-
gated. For example, Prkg2, that encodes cGMP-dependent protein kinase II, cGKII, 
was targeted by retroviral insertions in two MMLV/PDGFB-induced brain tumors. 
Different human glioma cells have been transfected with Prkg2 and an overall re-
duction in colony formation and cell proliferation has been found, compared to 
controls transfected with truncated Prkg2 (with the first 10 exons) or empty vector 
(unpublished observations).

Conclusion and future perspectives
The approach to retrovirally tag candidate brain tumor-causing genes from PDGF-
encoding acutely transforming retroviruses turned out to be successful. Thus, we 
were able to present 66 brain tumor loci harboring candidate genes that could coop-
erate with PDGF in gliomagenesis (174).

The glioma model was evaluated with multigene cDNA arrays (209). Several 
differentially expressed genes were found when tumors were compared to normal 
brain. Among genes most likely to be differentially expressed, some genes belong-
ing to a Btl, as well as several genes identified in human high-grade gliomas were 
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found. Early (fast growing) tumors were generally GBM whereas late (slow grow-
ing) tumors were generally diagnosed as oligodendrogliomas. In addition, genes 
involved in regulating progression and markers for these different glioma types 
were suggested. 

A finding that strengthens the concept of insertional mutagenesis as a causative 
event in the MMLV/PDGFB glioma model is that the number of integrations cor-
relates with the glioma development and progression. Hence, significantly more in-
sertions were found in the high grade GBM tumors with short latency as compared 
to low grade long-latency oligonderoglial tumors (209). 

The validation of the candidate cancer-causing genes identified has only just 
begun. First, genes unrelated to transformation targeted by coincidence or involved 
in viral replication must be sorted out and discarded. As enhancer mechanisms are 
known to operate over large distances (217) some of the loci were reported to tag 
more than one gene. Examination of expression of the tagged genes in the tumors 
where they were found could be important in order to select out the relevant ones. 

Are the candidate genes identified with the MMLV/PDGFB glioma model rel-
evant also in human brain tumor development? Expression analysis of the MMLV/
PDGFB-induced brain tumors identified several differentially expressed genes pre-
viously found with a similar expression in human glioma samples. PDGF is a mito-
gen for both mouse and human glial cells and executes similar downstream signal-
ing pathways in both species. Mouse cells are more easily transformed as compared 
to human cells in part because of their increased levels of telomerase in their cells. 
Normal human astrocytes require at least four genetic alterations (hTERT expres-
sion, Ras pathway activation, p53 inactivation, and pRb/p16 pathway inactivation) 
for astrocytoma formation (218). Apart from hTERT expression (which is already 
upregulated in mice), the other three pathways have all been implicated in mouse 
models of human gliomas (see previous chapters).  

Expression analysis of corresponding candidate genes in the human disease 
has to be performed and compared with their expression in mouse gliomas. Both 
mRNA and protein expression of selected Btl genes have to be analyzed and stud-
ied in human brain tumors samples and cell lines. 

Loci encoding microRNAs have been frequently targeted in the MMLV/PDGFB 
model. Some of the microRNAs targeted are now being evaluated. The expression 
of a cluster of miRNA29a and miRNA29b in brain tumor cells is investigated. These 
microRNAs are close to five proviral integrations in a locus on mouse chromo-
some 6 with very few genes or expressed sequence tags. A recent report shows that 
microRNA29a and microRNA29b were specifically up-regulated in mouse tumors 
containing retroviral integrations close to these microRNAs (219). This finding po-
tentiates their role in leukemogenesis. MicroRNA-21 previously found to be over-
expressed and anti-apoptotic in glioma cells was also tagged in three brain tumors; 
in one tumor less than 2 kb upstream of the mature microRNA. Particularly, several 
insertions in retroviral tumor screens (like ours) are close to microRNAs (as reported 
in (220)). This phenomenon could correlate with the fact that the retroviruses often 
integrate near chromosomal fragile sites (221) i.e. regions that have an overrepre-
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sentation of microRNAs (75). About a hundred fragile sites have been found in the 
human genome. They are regions found to be related to cancer development as they 
are susceptible to chromosome breakage and to amplifications (222). 

Some of the tagged genes are especially interesting as they belong to the same 
protein families and thus could affect similar downstream signaling pathways. For 
example, genes of Sppl2b and Sppl3 that belong to the family of presenilin-like pro-
teases and the entire family of nuclear factor I (NFI) DNA-binding protein genes 
were tagged. As Nfia, Nfib and Nfic each were targeted once; Nfix was tagged in 
five different mouse gliomas. Similarly, three integrations downstream of both 
Rhbg and Rhcg genes were found. These genes encode proteins that belong to the 
Rhesus family of ammonium ion transporters. However, the microRNAs mmu-mir-
9-1 and mmu-mir-9-3 that give rise to an identical mature miRNA sequence are 
also located downstream of Rhbg on chromosome 3 and Rhcg on chromosome 7 in 
the mouse genome, respectively. It is then tempting to suggest that it is rather these 
microRNAs that are retrovirally tagged in these brain tumors. 

As described above, seven Btl genes had previous implications in tumorigen-
esis. Several other Btl genes have after the time of publication been reported to 
have a functional role in tumorigenesis; Tax1bp2 was tagged in six of the MMLV/
PDGFB-induced mouse brain tumors. A recent study describes that downregulation 
of Tax1bp2 expression by siRNA induces centrosome hyperamplification (223) 
which results in aneuploidy, often seen in cancers. Although Sulf2 (tagged in two 
mouse gliomas) is upregulated in breast cancer (224) as well as in our MMLV/
PDGFB tumors (209) it has been reported to have a suppressor role in myeloma 
(225). Rap1gap that was tagged three times has been found to suppress tumor cells 
in different types of human cancer (226, 227). Downregulation of the gene con-
tributes to Ras transformation (228). Btg2 has been found to have a major role 
during p53 suppression of Ras transformation (229). In the same intron as Camk2b 
was tagged in MMLV/PDGFB-induced gliomas it was also targeted by insertional 
mutagenesis in a recent gene therapy model screening for genes involved in T-cell 
transformation (230). Map2k5 (tagged in five mouse gliomas) has been found to 
induce apoptosis if overexpressed in medulloblastoma cells (231). Although the 
majority of reported genes targeted by retroviral insertional mutagenesis are puta-
tive oncogenes, a lot of genes identified in the MMLV/PDGFB model have been 
reported to function as putative tumor suppressors. A reason for the possible target-
ing of a greater fraction of suppressor genes in the MMLV/PDGFB model might 
reflect the use an oncogene, PDGFB to initiate tumorigenesis.

Moreover, elevated expression of a number of Btl genes implicate that they may 
have a role in brain tumors: Plekhb1 has been found to differ in a screen where 
pilocytic astrocytoma was compared to glioblastoma (232). Expression of Sox10 
has been implicated to be a ubiquitous marker for glioma cells (216, 233, 234); The 
Btl gene Sdc3 is also found to be expressed in glioma cells (235). 

Three integrations in each of Ddr1 and Cspg4 (NG2) genes were found. Ddr1, 
a tyrosine kinase with a known role in gliomagenesis has further been found to 
promote glioma cell invasion (236) and correlates with a poor prognosis in glioma 
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patients (237). Cspg4  overexpression has been known to increase tumor initiation 
and growth rates, neovascularization, and cellular proliferation in gliomas (238). 

Frequently tagged genes identified in our screen like Nfix and Rad51l1 were also 
found among the relatively few integrations found in a screen for imatinib-resist-
ance genes in a mouse model of chronic myeloid leukemia (239). This indicates 
that several of the tagged genes in the MMLV/PDGFB model are not only involved 
in PDGF signaling but might also participate in imatinib (and thus PDGFR treat-
ment) resistance.

In addition, of the consensus sequences recently discovered with mutations in 
colorectal and breast cancer patients at least four Btl genes were present including, 
TP53, RAP1GA1, SULF2 and GLI1 (240). All these examples of tagged Btl genes 
that have been proposed a role in tumorigenesis potentiate the relevance of our 
findings. A further role for the proteins of these retrovirally tagged glioma genes in 
PDGF signaling must be elucidated. 
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