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A Note on the Kinetics of Oedema Formation and the 
Paracapillary Transport of Macromolecules 

Torsten Teorell 
Department of Physiology and Medical Biophysics, University of Uppsula,  Sweden 

This preliminary note has been prompted by a need of a formal pharmaco- 

kinetic model for the distribution of large molecules in a system blood capil- 

laries - interstitial tissue - lymphatics. 
Basic considerations - The aim is a simplified compartmental analysis in 

terms of fluid flows containing dissolved substances (macromolecules) which 

are subject to "friction" or "retention" located in the capillary walls and 

in the interstitial matrix. In contrast to earlier work the strict physical 

"pore" concepts will be circumvented by the introduction of an "admittance" 

coefficient. Furthermore, bulk flow transport (= fluid flow = convection) will 

be considered as the dominating transport form rather than regular diffusion, 

because we shall deal with macromolecular solutes of very low diffusibility (as 

for instance dextran). Finally,time variant "distribution" volumes will be in- 

troduced.The model is schematically 

/Art./ Inflow ( 0 )  -+ (1) 
(Filtration) I> (Resornt ion) 

/Ven./ 0utf1ow(4)- (2)  /Interstitiurn/ 

( 3 )  ---+ (5)/Lymph flow/ 

It consists of three closed compartments: Number (1) and (2) are connected in 

series,while numher ( 3 )  is shunted in parallel between (1) and (2). There are 

three entries: one Inflow (pressurized) to (l), and one Outflow from (2) and 

one exit (Lymph flow) from ( 3 ) .  Grossly,it may resemble some technological 

tank system for liquid mixing. However,an important property is added,namely 

that the walls of  the "tanks" are distensible and react to pressure by vo- 

lume changes (due to compliance). The mathematics employed is also obviously 

related to the "clearance" and "extraction" equations which have been presen- 

ted in the physiological literature. 
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Many ingredients from the dominating papers in this field have been in- 

corporated in the following treatment. In particular,it has certain similari- 

ties with the analog simulation model of Wiederhielm (1968) and the work by 

aberg et al. (1974-75),but there are also essential differences.A few other 

papers are listed in the References. 

Mathematical Treatment 

A.  Relation between pressures and bulk flow: -Notations. The symbols are 

written for computer convenience as capital letters and figures which refer 

to parameters and locations,according to the scheme above. For example: 

I the rate of Inflow. The product of the driving pressure head and the 

P1 refers to the hydrostatic pressure in compartment (1). 

H23 

inflow conductance is lumped in the symbol I. 

signifies the hydraulic conductance of the boundary or "channel" 
between ( 2 )  and (3), it includes a constant area. 

C3 concentration in (3) of the "test" substance. 

ClX concentration of non-penetrable "plasma colloids" which exert a 
colloid osmotic pressure.(C3x) i s  set to zero. 

W2 volume of distribution in (2)at the time t. 

v3 the fraction of (W3) available for the test substance. 

U3x amount of non-diffusible colloid in (3), the interstitium,dissolved 
in the distribution volume (W3).The osmolar concentration is approxi- 
mated to (U3x) / (W3) . 
colloid osmotic pressure which is a function of (Clx) and (C2 1. 
Hence, (cpl) = (rl) (Clx) and (cp2) = (r2) (C2x). 
Note that these "oncotic" pressures h e  time variant. 

is set equal to (~3~)/(~3). 

to (Pl-P3-cpl + cp3). 

X 
cpl 

cp3 
T13 net total pressure difference ("Tension") between (1) and (3) ,equal 

T23 ditto between (2) and (3),equal to (P2-P3-cp2 + cp3). 

F is the instantaneous flow rate of the solvent ("bulk flow"),which 
transports the test so1ute.h any particular "channel": 

(Rate of bulk flow) = (net total pressure difference (tension)) x 
(hydraulic conductance) or (F) = (T) (H) . 

I = inflow rate,I direction: Inflow - (1) 
F12 = (Pl-P2) (H12) (1) - ( 7 )  
F13 = (T13)(H13) (1) - (3) 
F23 = (T23)(H23) ( 2 )  - (3) 
F24 = (P2)(H24) (2) - Outflow (4) 
F35 = (P3)(H35)./If(P3)&0 set (H351=Q/(3) L>mph flow (5) 
f13 = is a factorpl by which F(13) is multiplied to account for ''water'' 

transporffree from the test substance. (f13)=1.2 means that 20 per 
cent "extra" solvent volume is extruded by the same net driving 
force (T13),that drives the test solute, cf. / E q s .  4 ,  6 ,  7, 9, 111. 
is the "admittance" coefficient defined in section B. 

;.a 
C,P,W are the time derivatives d(C)/dt,d(P)/dt,d(W)/dt. 
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B.Theoretica1 considerations on the solute flow of macromolecules ("fluxes")- 

A generally accepted theory for transport kinetics in a system with simul- 
taneous diffusion and bulk flow is formulated in the wellknown Hertz convec- 

tion-diffusion equation. This reveals the importance of a coupling term between 

the bulk flow velocity (V),the diffusion coefficient (D) and the length of the 

transport path (L) as the exponential in the Hertz equation,abbreviated "exp 

(-VL/D) ' I .  

This equation has interesting limiting cases (cf Teorell 1969): at steady 

states and for very large V:s, the fluxes become J = V(C1) and J = -V(C2) 

respectively depending on the bulk flow direction. Note that the diffusion con- 

stant D disappears. The same simple limiting equations apply at moderate or 

small bulk flow velocities if D is very small. An extended transport path L 
favours also dominance of bulk flow transport,J = V * C,or in the present nota- 

tion J = (F)(C).However,"fine pore" theories and experimental evidence show that 

other factors complicate matters: transport of solutes across a porous membrane 

involve several frictional interactions and the D value has to be corrected 

according to ''restricted diffusion" formulas by Renkin-Pappenheimer and others. 

These considerations certainly give a pessimistic outlook for an easy 

pharmacokinetic approach to the "paracapillary" system. In order to resolve the 
dilemma a very simplified view was adopted.When dissolved macromolecules borne 

on a solvent stream encounter blood vessel walls or the interstitial structural 

matrix they get"stranded"0r "wrecked" for a longer or shorter time, hence the 

travel rate, relative to the immobile matrix,will be less for the solute than 

for the solvent. A proper term would be "retardation" or "sieving".However, these 

terms have somewhat different significance for different authors. What "happens1' 

is that the solute is impeded i.e. the compartment boundaries offer an "impedan- 
ce" ( Z ) ,  for the "current" of the dissolved macromolecules. To pursue 
this electrical analogy, the use of the term "admittance" is adopted for the 

inverse of the impedance,Y = l / Z .  "Admittance" has the dimension l/(complex) 

resistance. The following definition will be used, 

Admittance coefficient (Y) = 1,when the solute travels with the same rate 

as the solvent,i.e. no retardation with respect to the compartment "channel" 

wall. 

(Y)<l,lowered admittance of the solute particles to the transport path, 

(Y) >1, enhanced admittance 9 will not be discussed here (="facilitated" 

One can now write: (Rate of concentration change)=(flow rate)x(admittance) 

hence lowered transport rate. 

transport). 

x(conc.)=(F)x(Y)x(C) ,compare section E . 
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The admittance concept is,of course, an oversimplification.However, it has 

obvious relations to gel chromatography and similar procedures. It does not 

directly include any relation (pore diameter - molecular diameter).The con- 

cept is void of preformed pore structures of any dimensions. Nevertheless,it 

may be intepreted as a symbolic transcription of the Staverman "reflection 

coefficient I' ( 8  ) as (1 - 0' ).Possible relations between Y and molecular size 
will be mentioned in section F. 

At this point it should be strongly emphasized that the presented theory 

is not committed beyond the built-in assumptions,Hence, any identification or 

interpretation in specialized physical or physiological terms should be made 

with great caution. 

Before one can set up the final differential equations (sections D andF,) 
the problem of time variant volumes must be treated in the following section. 

C.The kinetics of solute transport with time variant "distribution" vo- 

lumes.- The basic rate equation in pharmacokinetics of multicompartment sys- 

tems is(dN)/(dt)= k-(x/V1-y/V ) where N,x and y are amounts,V and V2 time 

- invariant distribution volumes and lf. a rate constant (cf.Teorel1 1937). I n  

"mixing" kinetics the 

a time-dependent volume can be solved by the introduction of a "dilution cor- 

rection"(Teorel1 1947).In the essence the modification of a rate equation in- 

volving time variant compartment volumes (W) rests on the transformation 

(dN)/(dt) = d(CW)/(dt) = C(dW)/(dt) + W(dC)/(dt),here 5 is the concentration. 
Material conservation requires that (dN)/(dt) should be equal to the net sum 

of all "ingoing" and "outgoing" rates of "amount" transport (="sum of fluxes"). 

After rearrangement of the terms one abtains the rate of change of the concen- 

tration as 

2 1 

includes the rate of bulk flow.Diffusion kinetics with 

(dC)/(dt) = (sum of fluxes)/(W) - (C)(dW)/(dt)/(W) 

The second term is the "dilution term" (positive or negative). I n  the present 

problem (dW)/(dt) is directly accessible from Eqs. 4-6 below. The solute "flux" 

will be described in section E. 

D. The differential equations for bulk flows:- The initial conditions refer 

to the assumption that the compartment walls are reversibly distensible 

under varying internal pressures obeying linear relation that the instantaneous 

volume Wi(t) = (qi)(Pi) + Wi(t=O). Here i is the compartment number and Wi(t=O) 

the constant volume under zero pressure (referred to the "outside"). The para- 

meter (qi) is a constant compliance coefficient. A s  i = 3 three volume-pressure 

equations (= Q-2 - Eq.a are needed which should be solved in anauxiliary 

subroutine to be run in parallel with the final computer integration procedure. 

- 

- 
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The rate of volume change is dW/dt = (q)*dP/dt, hence one needs to employ 

only one set of differential equations either in W(t) or P(t). In any compart- 

ment the following equation is obeyed: 

Rate of change of volume = sum of ingoing and outgoing volume rates 

Using the bulk flow definitions of the previous section A one can now 

formulate the first set of differential equations necessary to solve the kine- 

tic problem in question: 

d(Wl)/(dt) = (ql) *d(Pl)/(dt) =(I)- (F13) (f13) - F(12) IEq.41 
d(W2)/(dt) = (q2).d(P2)/(dt) = (F12) - (F23) - (F24) /Eq.5/ 
d(W3)/(dt) = (q3)'d(P3)/(dt) (F13)(f13) + (F23) - (F35) /Eq.6/ 

AS pointed out above Eqs. 1-3 should be run,together with Eqs. 4-6,as sub- 

routines. 

E. The solute flux differential equations: ---Using the notation and defini- 

tions of section A and section C a second set of differential equations,now in 

terms of concentration changes, is 

(A") =((1)(COX)- (F13) (Y13x) (Cl") - 
-(Clx) (I)+(Clx) (F13) (f13))/(W1) /Eq.7/ 

/Eq .8/ 

(;3) = ((F13) (Y13) (Cl) + (F23) (Y23) (C3)-(F35) (Y35) (C3) - 
-(C3) (F13) (f13)-(C3) (F23)+(C3) (F35))/((W3) (~3)) 

/Eq.ll/ 

Eq. 7 and 8 apply to the "plasma colloids", Eqs.9 through Eq.11 to the 

"test" substance. 

The second row in an equation contains the noncancelling parts of the 

"dilution correct ion". 

Comments to section D and E: - Eqs.(l-3),(4-6) provide the basis for 

the kinetics of oedema formation,but they require also Eq.7 and Eq.8 to gene- 

rate the colloid osmotic pressure contributions (cp) . The concentration scale 
of (C) is sufficiently small to give negligible cp' s. The __ total system,Eqs.l 

through Eq.11, describes pharmacokinetics of "test" macromolecules in the 

given compartment system, which mimics the "paracapillary" dynamics. Grossly 

the treatment can conform with the Landis-Starling's concept as will be shown 

in the next section F. 

123 



F. A numerical example:--The Runga-Kutta-Gill integration method was used for 
solution of the system of simultaneous differential equations derived in sec- 

tions D and E, i. e. Eqs ( 4  through 11). Arbitrary values for constants were 

(H12)=O.5,(H13)=2,(H23)=ly(H24)=2 (at "venous congestion" =O1.5) YH(35) = 0.5, 

(f13) = 1.2, (U3 ) = 0.5 and (rl) = (r2) = 0.5. Initial coriditions were 

(WlO)=(W20)=(W30)= 1 with corresponding constant compliances (ql) = 0.5, q(2)= 
-(q3)=lYthe (P)s about 0.01 - 1 and finally the concentrations (COX)=3 and 

X 

(CO)= 3. 

The "Inflow" I = 3 ("continuous injection"). 

The assignment of numerical admittance values (Y) is difficult. A pure 
ad hoc assumption is that the admittance is proportional to some power of the 

solute molecular surface area. In order to obtain a reasonable fit with the 

experiments of Grotte ( 1956) on dextrans of different mol.wts. it was empiri- 

cally found that Y = 12 * (MW '10-3)-3/2was satisfactory for MW 

300.1O3).In Tables I and I1 the Y-value becomes 0.23 for MW= 14.10 . 
(5200 to 

3 

This formula yields Y = 1 for a MW of 5200, meaning ful1,unrestricted 
admittance,i.e. a solute transport velocity equal to the solvent flow velocity. 

For larger MW' s the Y becomes increasingly smaller (for MW = 7 0 ~ 1 0 ~  

0.02). The Y formula is primarily assigned to the (1-3) compartment barrier 

(the arteriole capillary wall) as ( Y13). 

y= 

(Y13x) = 0.002. 
It is conceivable that further impedance will be encountered by the mole- 

cules,which have been admitted to the interstitium during the ensuing solvent 

drift towards the venous part (2) and the lymph vessels (5). To describe the 

coercion and crowding of the macromolecules "in transit" in (3) the following 

empirical expressions were used: (Y23) = l/(l+a/(Y13)) ,respectively (Y35)= 

= 1/(1 +b/(Y13)) with the value of a= 0.3 and b= 0.01. The factor (v3) was 

equal to Y(35). 

Resu1ts.A comprehensive presentation is assembled in the Tables I and 2. 
A diagram of comparisons with Grotte' s material (loc.cit.1956,Table 17,p.58 

and Table 18,p62) is shown in Figure 1. 

CONCLUSIONS:- The "ultra"-filtration in (1) leads to an appreciable concen- 

tration augmentation of both the "plasma" colloids and the test substance,which 

is greatly compensated in (2) by "resorption". Only about 50 per cent of the 

test "macrosolute" (M= 14.10~) resides in (3),the interstitium. The "C /C 

ratio declines to a level of about 0.05 - 0.1 at large molecular sizes in rea- 
sonable agreement with Grotte's observations (cf.2g;ure l). 

L P  

The effect of venous congestion is a marked pressure increase in all com- 

partments,particularly of (2),and corresponding volume increases. The total vo- 

lume increase results in a "swelling" or "oedema" to about twice the normal 
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.4 ! 

Compartment _j 

Pressure (P )  

Colloid - ' I -  (cp) 

Volume (W) 

Conc.(coll. (Cx) 

- ' I -  (test) (C) 

1 + Normal 

(1) Art. 

4.26 ( 6 . 3 2 )  

3.02 ( 3 . 5 4 )  

3 .13  ( 4 . 1 6 )  

6.04 ( 7 . 0 8 )  

5.07 ( 5 . 6 3 )  

0 + 
0 + 

O I  

o Venous congestion 
0 
0 10 20 30 nx1o5 

Fig. 1 

I 
60 100 200 300 M ~ I O - ~  

Table 1.Values of parameters in normal conditions and venous congestion (pa- 

renthesis) .M = 14-10  . Steady state. (COX)=3, (CO) = 3 .  3 

( 2 )  Ven. 

1.28 ( 3 . 7 9 )  

1.75 ( 2 . 3 6 )  

2.28 ( 4 . 7 9 )  

3.50 ( 4 . 7 2 )  

3.24 ( 3 . 9 6 )  

( 3 )  Interstit. 

0.87 ( 2 . 2 1 )  

0.26 ( 0 . 1 6 )  

P .87 ( 3 . 2 0 )  

neglected 

1.65 ( 1 . 4 G )  

Sum of volumes 7.28 (12.16 = oedema) 

Lymph flow 0.44 (1 .11 )  

" C  /c ' 1 ,  (C3)  / ( C O )  0.55 ( 0 . 4 7 )  
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Table 11. Rates of bulk flow and solute transport (amount):'fluxyin normal 

conditions and venous congestion (parenthesis).p.f= 14.10 . Steady state. 3 

Bulk flow 

3.0 ( 3 . 0 ) -  

1.49 (1.27) 

1.51 (1.73) 

-1.08 (-0.63) 

- _ _ _ _ -  

0.44 (1.11) 

2.56 (1.89) 

3.0 (3.0 7 - - _ _ - -  

Solute flux 

9.0 (9_._0,- 

7.54 (7.13) 

1.46 (1.86) 

-0.77 -0.38) 

0.69 (1.48) 

8.31 (7.51) 

9.00 (8.99) 
. - - - - - - - 

Process 

volume. The macrosolute concentration in (3) decreases by about 15 per cent 

and the lymph flow rate becomes approximately doubled, also in good agreement 

with Grotte's data. 

In spite of the unphysiological arrangement and scaling one may conclude 

that the proposed model can serve to reproduce essential properties of the 

Landis-Starling paracapillary circulation.The results have been confined to 

steady state,but preliminary work has shown that the transient time course,i.e. 

the actual kinetics ,has many interesting features which will be discussed in 

other publications. It is obvious that the model lends itself to studies on 
the "single injection" technique,or other problems dealing with the circula- 

t ion. 
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