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ABSTRACT 
When heart volume is calculated from two X-ray projec- 
tions, part of the error is due to the fact that the formulas 
employed are not mathematically exact. This error was 
calculated for a variety of shapes and positions of the heart. 
The results indicate that this error may reach about 30% for 
hearts of fairly ordinary shape. When the standard projec- 
tions are used, horizontally positioned hearts are particu- 
larly liable to give rise to large errors of this kind. 

INTRODUCTION 

In the routine determination of heart volume from 
chest X-ray films, the heart is assumed to have the 
shape of an ellipsoid, and the volume of this el- 
lipsoid is calculated by the multiplication of three 
distances (“axes”) measured from the films, and a 
constant factor. The most important source of error 
in this procedure probably lies in the estimation of 
the position of parts of the heart border, but there 
are several more. 

The actual volume of the heart may be expressed 
as 

where el ,  e,, e3 are the errors in the estimates of the 
distances to be measured whose actual values arel,, 
I , ,  I , .  8, and 6, are enlargement factors, which would 
be unity if the films could be put in the “ideal film 
plane”, i.e. the plane passing through the centre of 
the heart perpendicularly to the central X-ray, but 
in practice they will be larger because of the di- 
vergence of the rays, and S is a shape factor be- 
cause the heart is not really ellipsoidal. G, finally, is 
a geometrical factor because the distances I , ,  I,, I ,  
do not generally coincide with the main axes of the 
ellipsoid so that the formula ~ r / 6 . 1 , . 1 , . 1 ~  for the 
volume is not mathematically valid. 

In routine practice, average values of el,  e,, e,. 
el, O,, G and S are usually grouped with r / 6  into a 
single empirical constant. When more indi- 

vidualized values are needed, these can easily be 
obtained for B1 and 8, from measurements of the 
focus-film and heart-film distances. S is more dif- 
ficult to handle, but some aid can be had from the 
work on heart models by Bergstrom (1) .  G is depen- 
dent on the shape and orientation of the heart and 
can be calculated mathematically, which is the sub- 
ject of this paper. 

No such calculations of G seem to have been 
published, it being usually tacitly assumed that the 
variations in G are negligible in practice. This 
seems a reasonable assumption, in view of the 
many other sources of error, but it is not self- 
evident. Also, at the time when the methods were 
originally being developed, the required amount of 
computing effort must have seemed forbidding, but 
it can easily be handled with computer. 

Therefore, this paper presents calculations of G 
for various shapes and positions of the heart el- 
lipsoid, aiming to determine the variations in calcu- 
lated volume introduced by this factor. 

In these calculations, account is taken of two 
different ways of defining I , ,  I ,  and I,. According to 
Jonsell(2) (the commonly used method) I ,  and 1, are 
the lengths of the main axes of the heart shadow on 
the frontal film, and I ,  is the longest sagittal chord of 
the heart shadow on the lateral film (Fig. 1). 
Alternatively, according to Kjellberg et al. (4 )  1 ,  and 
1 ,  may be taken as the overall width and overall 
height of the heart shadow on the frontal film. 
These authors also recommended a 30” angutation 
of the tube, and an accompanying correction factor 
in the formula (m, corrected for magnifica- 
tion), but this has not been included in this work, as 
the angulation of the tube has not found favour in 
practice. 

METHODS 
The mathematicaf model indicated in Fig. 2 was used. It 
assumes that the X-ray source is a point and that the 
central ray passes through the centre of the heart. 
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Fig. 1 .  The theoretical parameters I , ,  I, and l3  of the 
formulas of Jonsell and Kjellberg. 

An ellipsoid with half-axes a, b, c ( a a b a c )  has its 
centre at the origin of a three-dimensional orthogonal 
coordinate system. At distance U along the x-axis, there is 
one ray source, which projects the ellipsoid onto the 
“ideal film plane”, the yz-plane (equation x = O ) .  The lat- 
eral projection is from a ray source at distance V along the 
y-axis onto the xz-plane (y=O). 

These projections are ellipses, whose equations were 
determined as described in Appendix I. From these equa- 
tions were calculated the frontal measurement distances l ,  
and 1, as defined by Jonsell (Appendix IIa) and Kjellberg 
(Appendix IIb) and I,, the distance on the lateral projec- 
tion common to these methods (Appendix IIc). The prod- 
uct of these axes was divided by 8 .  a . b . c to yield G .  

The calculations were programmed in Nord Compiler 
Basic and performed on a Nord-10 computer. 

RESULTS 

121 different ellipsoid shapes were investigated, 
with the axis ratios alb and blc varying between 1 
and 2. The absolute parameter values, which are 
not of critical importance in this connection, were 
chosen: b = 4  cm, U =  140 cm, V =  130 cm. For each 
ellipsoid, G was calculated according to Jonsell’s 
and Kjellberg’s methods in 1 170 different positions, 
viz. with the long axis in 65 different directions 
spread throughout one quadrant of space, and with 
18 rotations (spaced at lo” intervals) around the 
long axis in each of the 65 directions. The positions 
giving maximum and minimum G were noted for 
each shape. 

The minimum possible G invariably occurred 
when the axes of the ellipsoid were closely parallel 
to the coordinate axes, and it was in all cases 1.001 
according to both methods. 

The maximum possible G was also found to have 
the same value for both methods, but vaned accord- 
ing to the shape of the ellipsoid, as shown in Table 
I. It generally occurred when the second longest 
axis of the ellipsoid was parallel to the z coordinate 
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axis, and the long axis was in a direction midway 
between the x and y coordinate axes. 

Another parameter, the “sagittal diameter’ quo- 
tient” was also calculated. It was defined as the 
sagittal diameter of the lateral heart projection (i.e. 
13)  divided by the actual sagittal (i.e. in the direction 
of the x-axis) diameter of the ellipsoid, determined 
as described in Appendix 111. It was found to 
coincide with G to two decimal places, but was up 
to three units smaller in the third decimal position. 

Also, the variations in G when one specific el- 
lipsoid (axis ratio 1.6 : l : 0.75) rotated about its 
vertical (i.e. in the direction of the z-axis) 
second-longest axis were investigated. This was 
done in order to illustrate the high sensitivity of G to 
rotation in horizontal (i.e., with the long axis in the 
transversal plane of the body) hearts. The results 
are shown in Fig. 3 .  

DISCUSSION 

From the results, it is seen how the geometrical 
error factor G is caused. The whole method is 
founded on the formula of Kahlstorf (3) which 
states that the volume of any ellipsoid is 213 of the 
product of the area of the frontal projection of the 
ellipsoid and the sagittal diameter of the ellipsoid. 
By methods similar to those described in the Ap- 
pendices this formula can be shown to be math- 
ematically exact (Kahlstorf‘s proof, however, is 
not complete), but when it is applied in the radiolog- 
ical context, two error factors occur. The important 
one of these is expressed in the “sagittal diameter 
quotient”: the sagittal diameter of the heart cannot 

Z 

T /  
Fig. 2. The coordinate system used for the calculations, 
with an ellipsoid centered at the origin and ray sources at 
(U;  0; 0) and (0; V; 0). 
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Table I. The maximum values of the geometrical error factor G, obtainable by rotations of 121 ellipsoids 
with one axis =8 cm and the other axes varying as shown 
The “sagittal diameter quotient”, calculated under the same premises, also conforms with this table to two decimal 
places 

Long Short axis, 2c, cm 
axis, 
2 6  cm 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.8 8.0 

8.0 1.25 1.18 1.13 1.10 1.06 1.04 1.03 1.01 1.01 1.0 1.0 
8.8 1.33 1.25 1.19 1.14 1.10 1.08 1.05 1.04 1.03 1.01 1.01 
9.6 1.41 1.32 1.25 1.19 1.15 1 . 1 1  1.09 1.06 1.04 1.03 1.02 

10.4 1.50 1.40 1.32 1.25 1.20 1.16 1.12 1.09 1.07 1.05 1.04 
11.2 1.58 1.47 1.38 1.31 1.25 1.20 1.16 1.13 1.10 1.08 1.06 
12.0 1.67 1.55 1.45 1.37 1.31 1.25 1.21 1.17 1.14 1 . 1 1  1.09 
12.8 1.76 1.63 1.52 1.44 1.36 11301 1.25 1.21 1.17 1.14 1.12 
13.6 1.85 1.71 1.60 1.50 1.42 1.36 1.30 1.25 1.21 1.18 1.15 
14.4 1.94 1.80 1.67 1.57 1.48 1.41 1.35 1.30 1.25 1.22 1.18 
15.2 2.04 1.88 1.75 1.64 1.55 1.47 1.40 1.35 1.30 1.26 1.22 
16.0 2.13 1.96 1.82 1.71 1.61 1.53 1.46 1.40 1.34 1.30 1.26 

be seen, and one will have to be content with the 
sagittal diameter of the heart’s lateral projection. A 
second error is caused by the divergence of the 
rays, even after correction for magnification, but if 
the ray source is reasonably distant, this error has 
no practical importance. In the circumstances 
analyzed here, it did not exceed 0.3 %. 

It is now easy to understand why G is largest for 
horizontal hearts in intermediate rotation; in this 
position, the measured sagittal diameter is de- 
termined mainly by the long axis of the heart and 
has hardly anything to do with the actual sagittal 
diameter. 

Some of the values of G in Table I may seem 
appallingly distant from unity, but it must be re- 
membered that values resulting from shapes and 
positions that do not occur in practice are not only 
practically but also theoretically without interest. 
This is because any method that attempts to esti- 
mate the volume of the heart (or of any other object) 
from only two projections must necessarily assume 
that the shape of the heart keeps within some kind 
of bounds. This necessity is illustrated, as pointed 
out by Bergstrom (I),  by the fact that any pair of 
heart projections could in principle be caused by a 
suitably positioned disc with zero thickness. 

The limits for the shapes included in Table I are 
rather wide. For example, the value in the lower left 
corner corresponds to a flat horizontal heart in in- 
termediate rotation, twice as long as wide. While 
such a heart is not entirely impossible, it is certainly 
strange-looking. 

However, the table indicates that G may vary 

considerably, even for more normal shapes. E.g. if 
a heart with the axis ratios as 1.6 : 1 : 0.75 (marked 
in Table I) is regarded as the limit for a reasonable 
shape, the table shows that a horizontal heart in 
intermediate rotation may be calculated to have 
30% larger volume than the very same heart if 
vertical or rotated counter-clockwise. This is hardly 
a negligible error. 

Bergstrom (1) investigated a model ellipsoid ex- 
perimentally. He found, with Jonsell’s method, 
about 20 % variability. Since the axis lengths of the 
model were approximately 1.27 : 1 : 0.69, this agrees 
very well with the results shown in Table I. How- 
ever, Bergstrom obtained primarily negative devia- 
tions from the ideal. The reason for this has to be 
that in that work, a strictly practical view was 
taken, and the measurements likely to be made in 
practice were used, rather than the ideal distances, 

G 
A 

0 45 90 ’ DI 
COUNTER- INTER- CLOCK- 
CLOCKWISE MEDIATE WISE 

Fig. 3 .  The influence on G of rotation in the transversal 
plane of an ellipsoid with axis ratios 1.6 : 1 :0.75, horizon- 
tally positioned. 
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so that the error factors el, e2, e3 came to play a 
role. \ 1‘ Y% 

The results do not suggest any improvement in 
the formulas, since the problem is insufficient in- 
formation. They do suggest that the radiologist 
should be sceptical against the routinely computed 
heart volume in horizontal hearts, where the math- 
ematical error may be considerable, but is highly 
dependent on the rotation in the transversal plane 

y+ \ 1 
Fig. 4 .  See text, Appendix 11. 

(Fig. 3). In this case, it may be advisable to use 
additional projections, especially if high accuracy is 
required, or if the heart makes an impression of 
being elongated. 

APPENDIX I 

Calculation of the equations for the projections 
of the heart ellipsoid onto the “ideal 
film planes” 
First, a coordinate system x,,, yo, z,, is laid with its 
axes coinciding with the axes of the ellipsoid, so 
that its equation becomes 

The ray sources will be situated at points (A;  B; 
C )  (where w = U )  and (D;  E; F )  (where 
i m = V ) .  Since they are in orthogonal 
directions from the origin, AD+BE+CF=O. 

Any ray through (A;  B; C) satisfies the equations 

x,, - A +  at 

y,=B-tflt 

z,- c+ y t  (3) 

where a, p, y depend on the direction of the ray. It 
cuts the ellipsoid at the points satisfying the equa- 
tion obtained by eliminating xo, yo, zo between (2) 
and (3). After rearrangement this equation is 

t’ ($ + B2 b” + Y2 2) +2t ($ + + s) 
+ g+;+ $- 1) = O  (4) 

If this equation has no real roots, this means that 
the ray passes outside the ellipsoid. If there are two 
distinct roots it passes through the ellipsoid, and if 
there is one double root, it is a tangential ray. The 
latter happens if the discriminant of (4) is zero, i.e. 

(5) 

Thus, if a ,  p, y satisfy this equation, then (3) 
defines a tangential ray to the ellipsoid. 

If a ,  p and y are eliminated between (3) and (5) 
and terms are rearranged, the following equation 
results: 

This, then, is the equation of any point (xo ;  y o ;  zo )  
on the conical surface with apex at (A;  B; C) and 
tangential to the ellipsoid. 

The corresponding conical surface with apex at 
(D; E; F )  will have a similar equation (7) with D, E 
and F substituted for A, B and C. 

If now the Euclidean’ transformation 

A D G  
xo-x- + y -  + z -  u v w  

B E H  
y o = x - + y - + z -  u v w  

C F I  
zo -x -  + y -  + z- u v w  
where G=CE-FB, H=FA-CD, I=BD-AE, W =  

is applied, the system is rotated into 
the x, y ,  z-system defined previously, and (6) is 
transformed into 

’ A Euclidean transformation rotates space without af- 
fecting distances or angles. For reading on this matter the 
reader is referred to a textbook on linear algebra, e.g. (5) .  
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Similar reasoning gives the equation for the pro- 
jection of the ellipsoid onto the xz-plane, which is 
similar to (9), except that y ,  A ,  B and C have been 
interchanged with x, D ,  E,  and F,  respectively, and 
that the sign off is negative. H z  

+ 

This is then the equation of the conical surface 
with apex at ( U ;  0; 0) and tangent to the (now 
rotated) ellipsoid. Its intersection with the "ideal 
film plane" (x=O)  is obtained simply by settingx=O 
in (8). After rearrangement, this yields the ellipse 

dy' + eza + f y z  +gy + hz+ i = 0 (9) 

where 

1 ( I' H' G' fz' iz' ;'') 
V' a'b' a'c' b'c' 

d =  - - + - + - - -  _ -  _ _  

1 '(BG- AH)' (AZ- CG)' ( C H -  BZ)' + + -___ e = -  ( 
W 2  a2b2 aaca b'c' 

a' b' c' 

I(BG - A H )  H(AZ- CG) G ( C H -  BZ) + - +  f =-- 
V'W ( a'b' a'c' b'c' 

a' b2 c' 

I 

APPENDIX I1 

Calculation of various parameters of an ellipse 
of the form 

dx' + ey2+fxxv +gx + hy + i =  0 (9) 

( a )  Calculation of the main axes of the ellipse. I f f  is 
negative, the equation is first multiplied by - 1 .  
The Euclidean transformation 

where 

d-e 
If' + (d- e)' 

R =  

rotates the ellipse into the ellipse 

d,x, + elyl +gp, + h, y1  + i, = 0 

where 

2 2  

1 
d,= 2 ( d ( l - R ) + e ( l + R ) - f ~ )  

el = 5 (d(1 + R ) + e ( l  - R ) + f  v s )  1 

1 
g, = - (g I / l - ~ - h  KR) 

1/z 

Since the xfiy, term is zero, the axes of the ellipse 
are parallel to the coordinate axes. The translation 

i =  -(2+-+$) A' B2 
b' 
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brings the equation onto the form 

d,x: + e, y: + i, = 0 

where 

longest such chord is the one passing through the 
centre of the ellipse, i.e. 

k ,  + k ,  - 2dh - fg  
y = - - - - -  2 f z - 4 d e  

d, = d, 
If this value is inserted into eq. (9), an equation in 

e, = e, x results, whose roots 
i - i  -'-- g2 hT 

4d, 4e, 2dh - f g  2- 1 

+ g  
f f2-4de 

This is the equation of an ellipse, centered at the == - d 
origin. Its axes are 

I ,  = p 
e2 

1 ( g 2  - 4di) ( fa  - 4de) - (2dh - fg)a 
'5 r/ d 2 ( f 2 - 4 d e )  

are the x-coordinates of the intersections between 
the line and the ellipse. Evidently the distance be- 
tween them is 

( b )  Calculation of the overall width and height of 
the ellipse (Fig. 4 ) .  A line y=k ,  parallel to the 
x-axis, cuts the ellipse at at most two points, whose 
x-coordinates are given by the equation 

I = 
I/(g"-4di)(fa-4de)-(2dh-fg)' 

Id1 (fa - 4de) 

dx2 + eka + f x k  +gx + kh + i= 0 
APPENDIX 111 

Calculation of the length of the sagittal 
If the line is a tangent to the ellipse, these two 

points coincide, which happens if the discriminant 
of the equation is zero, i.e. if 

d b n e t e r  Of the ellipsoid 
In the xo,  y o ,  2,-system, the sagittal diameter is a 
line through the centre of the heart, passing through 
( A ;  B ;  C ) .  Its equation is r?)' - d ( e k a + h k + i ) = O  x,= At 

yo = Bt 
This is an equation ink with two roots 1 

z, = Ct 

2dh - fg  
f 2 - 4 &  - f 2 - 4 d e  

2 lb l/dh2- fgh - 4dei + f 'i + eg2 
If these equations are entered into ( 2 ) ,  an equa- - __ + k =.- 

tion in t results, with the roots 

Thus the lines y=k, and y=k2 are the two hori- 1 

Ba C2 
zontal tangents of the ellipse, and the distance be- 
tween them is obviously 

4 I/zi vdh2 + eg2 - 4dei - fgh + f ai 1 = -  ~. I f  - 4de 1 If these values are entered into (lo), the coordi- 
nates of the endpoints of the diameter are obtained. 

For the distance 1, between the vertical tangents, 
similar reasoning yields the same formula, with fi 
substituted for 0. 

( c )  Calculation of the longest chord of the ellipse 
parallel to the x-axis. From Fig. 4 it is seen that the 

The distance between these points is 

2u 
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