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ABSTRACT 
The kinetic behaviour of the resistance in Teorell’s mem- 
brane oscillator has been subjected to theoretical analysis. 
A membrane model has been considered which takes into 
account convection and diffusion as transport mechanisms. 
The nonlinear time dependence of the membrane re- 
sistance has been calculated for a step function in the 
convection velocity. The exact solution has been com- 
pared with Teorell’s monoexponential approximation of 
the resistance-decay function. The implications of the 
more complete convection-diffusion model are discussed 
and a modified expression of the rate constant is sug- 
gested. The results of the investigation are relevant when 
the membrane oscillator is used as a model of biological 
excitable cells. 

INTRODUCTION 

Oscillations in artificial membranes have attracted 
much attention as models of oscillatory behaviour 
in living cells. Teorell (1) first showed the existence 
of sustained oscillations of the electric potential 
in a porous membrane with fixed charges separating 
two electrolyte solutions with different concentra- 
tions. Hydrostatic pressure and electro-osmosis 
with accompanying bulk-flow (i.e. convection) 
played an essential part in the origin of the oscilla- 
tions. Rhythmic variations in the bulk-flow velocity 
and the pressure, as well as in the membrane re- 
sistance, accompanied the electric potential oscilla- 
tions. The energy for the oscillations was supplied 
by a constant current applied across the membrane. 

A theoretical description of the oscillations was 
also given by Teorell (2). The periodic changes in 
the resistance were associated with variations in the 
concentration profile caused by the periodic changes 
in the bulk-flow velocity. An essential feature of 
Teorell’s theory is the time-delay function of the 
resistance, due to changes in the convection veloc- 
ity. Without this delay function, no oscillations will 
occur. The physical basis for the resistance delay 
is the relaxation of the concentration profile, which 
is dependent on the combined action of convection 

5 - 722856 

and diffusion. Teorell introduced an approximation 
in the form of a first-order differential equation with 
respect to time, expressing the rate of change of 
the resistance as proportional to the deviation of the 
instantaneous resistance from the steady-state value. 
This approximation was found to be satisfactory, 
though the exact expression of the instantaneous 
resistance is certainly a much more complex func- 
tion, as Teorell pointed out. 

Other investigators have used different approaches 
to explain Teorell’s membrane oscillator. Kobatake 
& Fujita (3) have formulated a theory based on a 
thermodynamic and hydrodynamic treatment. Ara- 
now (4) has studied the hydrodynamic stability of 
the membrane oscillator. The different theories 
proposed for Teorell’s membrane oscillator have 
been reviewed and compared by Caplan & Miku- 
lecky (5). All the theories include approximations, 
but Teorell’s formulation has the advantage of being 
especially suitable for the successful simulation of a 
number of important biological phenomena in ex- 
citable tissue (6). Aranow (7) has also succeeded 
in verifying Teorell’s approximation of the in- 
stantaneous resistance, using a perturbation tech- 
nique. However, her treatment is only valid for a 
linear case, and is thus an approximation of a more 
general non-linear behaviour. 

The purpose of the present paper is to investigate 
a more complete model of the time-delay function 
of the resistance in Teorell’s excitability analogue. 
The model used is based on convection and diffu- 
sion as mechanisms of the concentration profile 
relaxation. The time dependence of the resistance, 
caused by changes in the convection velocity, has 
been analysed. In other words, the input-output 
relations of the convection-diffusion model have 
been studied with the convection velocity as the 
input variable and the membrane resistance as the 
output variable. Following the methods of control- 
system theory, there are two main possibilities of 
describing the system which are relevant in the pres- 

Upsala I Med Sci 77 



68 J. V. Hagglund 

i- 
I t  

0 

1 2 

Fig. 1. The convection-diffusion membrane model. The 
membrane extends from 0 to 6 in the x direction. The ex- 
terior salt solutions have the constant concentrations c1 
and c2 respectively. The ions in the membrane are transport- 
ed by diffusion and convection (i.e. solvent drag) with the 
velocity v. 

Fig. 2. The step function in the convection velocity u from a 
value v1 to a new value 0,. When the velocity step is applied 
to the membrane model in Fig. 1 ,  the concentration profile 
changes, thus causing a transient relaxation of the mem- 
brane resistance. 

ent case: (a) transient input response, and (b) fre- 
quency and phase response due to a periodic input. 
Frequency analysis for non-linear systems will be 
complicated by the fact that each input frequency 
will correspond to an output frequency spectrum. 
This investigation has been restricted to a study of 
the time-dependence of the resistance due to a step 
function in the convection velocity. The results are 
of importance for the kinetic description of the 
membrane oscillator and have proved to be espe- 
cially essential for the simulation of biological volt- 
age-clamp experiments (8). The equations used 
constitute a formal analogy to a constant-field 
single-ion electrodiffusion system (9). Thus the 
present analysis is of interest also in connection with 
electrodiffusion models for understanding the be- 
haviour of excitable cells. 

THEORY 

A porous membrane of thickness 6 is considered; 
it separates two compartments containing a salt 
solution at different concentrations cI and cz (Fig. 
1). The pores are assumed to be wide, so that inter- 
action with the pore walls can be neglected. The 
transport mechanisms are diffusion with the diffu- 
sion coefficient D and convection, i.e. bulk-flow or 
solvent drag, with the linear velocity v.  The one- 
dimensional problem is considered with variations 
in the space dimension x parallel to the diffusion- 
convection pathway. The non-steady-state proper- 
ties of this membrane model are analysed, allow- 
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ing variations as a function of time t. If the con- 
centration inside the membrane is c(x, t ) ,  then the 
integral instantaneous resistance r ( t )  (a cm*) of the 
membrane is given by (10, 2, 5 )  

where 1 is a constant describing the electrical be- 
haviour of the salt solution. For a monovalent salt 
(10) 

1 = P ( U +  + u-), (2) 

where u, is the molar mobility of the cation (cma 
mole/joule sec), u- is the molar mobility of the 
anion, and F is the Faraday constant. Using nor- 
malized (dimensionless) variables (cf. eq. (8) be- 
low), eq. (1) can be expressed as 

(3) 

where X = x / 6 ,  T=tD/d2,  C(X, T ) =  c(X, T ) / c ,  and 
R( 7') =r( T)1cl/6. 

Changes in the convection velocity v =v( t )  will 
distort the concentration profile and thus cause a 
relaxation of the membrane resistance. In Teorell's 
membrane oscillator (1, 2, 5 )  the current is usually 
constant and the variation in the potential will be 
proportional to the resistance changes. To simplify 
the theoretical interpretation of the oscillator, Teo- 
re11 (2) used an approximation for the non-steady- 
state behaviour of the resistance corresponding to 
the following equation: 

_ _ _ _  dR(T) dT - - K [ R ( T )  - R(m)] (4) 

where R(m)  is the normalized steady-state mem- 
brane resistance at infinite time for constant con- 
vection velocity v and K is a constant. If R(m) is 
time-independent, then the solution of eq. (4) is 

R( T )  = [R(O) - R( -)I exp ( - K T )  + R( m) (5 )  

where R(0) is the initial steady-state resistance. The 
time constant (not normalized) of this approxima- 
tion can be written as 

t = a2/KD = Ilk (6) 

where k is the rate constant used by Teorell in his 
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Fig. 3. Steady-state concentration profiles (left-hand figure) 
and resistivity profiles (right-hand figure) for the convection- 
diffusion model in Fig. 1, when C2=cz/cl=0.1. V is the 
normalized convection velocity defined as V =  vd/D. Inte- 
gration over the membrane of the resistivity profiles in the 
right-hand figure gives the normalized steady-state resist- 
ance R (00) of the membrane. 

Log scale 

approximation of the resistance-decay function cor- 
responding to eq. (4). 

In the present paper the exact variation of R(T)  
has been calculated for a step variation in the con- 
vection velocity v(t) from v1 to vz (Fig. 2). The re- 
sistance maintains a steady-state value correspond- 
ing to the velocity u1 at t < 0. The velocity is changed 
instantaneously and is kept constant at the new 
value ua at t >O. The exact solution of R(T) has been 
compared with the approximation in eq. (5).  

The concentration c(x, t )  in the membrane is 
described by the following differential equation, 
derived from the equation of the solute flux through 
the membrane and the equation of continuity: 

Fig.9 Fig.10 Fig.11 Fig.12 Fig.13 Fig.14 Fig.15 I 

(7) 

With normalized variables, eq. (7) can be rewritten 
(see normalizations under eq. (3)) as 

(8) 
aC(X, -- T )  - a2 C(X, T )  ac(K T )  

a X z  - V U - 7  aT 

where V(T)=v(T)d/D. 

The partial differential equation (8) is non-linear 
with respect to V(T) and it is probably not possible 
to find an analytical solution for a general case. 
However, for a step-function variation of the con- 
vection velocity according to Fig. 2, an analytical 
solution in the form of a Fourier series can be 
found, as shown in the Appendix. This solution has 
been used in combination with eq. (3) to obtain the 
transient behaviour of the membrane resistance due 
to the velocity step. 

COMPUTATIONS 

Numerical solutions were obtained, using a Control 
Data 3 600 digital computer. 

The steady-state concentration profile C(X, w) and 
the corresponding resistivity profile, defined as 
l/C(X, 00). are shown in Fig. 3. The curves were cal- 
culated from eq. (A8) for different values of V. In 
this figure, as well as in all of the following calcula- 
tions, C2 =O. 1 was used. 

The non-steady-state concentration C(X, T) was calculated 
from eqs. (A7)-(A9). The sum was calculated by an iterative 
method. The summation was carried on until an iteration 
added to C(X, T) a term which was less than C(X, T). 
sin(nnX). 10W. A check was made that the addition of further 
terms did not alter the results in the significant figures. The 
transient resistance was calculated for each value of T from 
eq. (3) by means of Simpson's integration formula. Since 
the integration is most critical in the region near X =  1 for 
high values of V (see Fig. 3), a smaller size of the intervals 
was chosen in the region X=0.9- 1, as compared with 
X=O-0.9 Usually 20 intervals were used for X=O-0.9 
and 40 intervals for X =  0.9- 1. 

RESULTS 

Resistance response 

The membrane resistance R(T) was calculated for 
some different types of the convection-velocity step 

Fig. 4. Classification of the different kinds of 
convection-velocity step functions V(T) used in 
the calculation of the resistance response in the 
convection-diffusion model. The numbers of the 
figures, showing the results for the different cases, 
are also indicated. 
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Fig. 5.  The membrane resistance R(T)  as a function of time 
T for step changes in the convection velocity V from Vl = 0 
to positive and negative values of V, (cf. Fig. 4). Note that 
the time constant decreases as the step is increased. It will 
also be seen that the initial rise is steeper than exponential, 
when the step is high and negative. 
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Fig. 6. Same as Fig. 5, but for positive velocity steps, which 
are symmetrical around V =  0 (cf. Fig. 4). 
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Fig. 7.  Same as Fig. 5,  but for negative symmetrical velocity 
steps (cf. Fig. 4). 

Upsala J Med Sci 77 

Fig. 8. Same as Fig. 5 ,  but for positive and negative velocity 
steps to V, = 0 (cf. Fig. 4). 
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Fig. 9. The time-dependent deviation of the instantaneous 
resistance R(T)  from the final steady-state value R(m) on 
a logarithmic scale in response to a positive step in the ve- 
locity V from V, = 0. (The same case is shown in Fig. 5.) 

Fig. 10. Same as Fig. 9, but for a case corresponding to Fig. 
6. Note the general resemblance, as compared with the curves 
in Fig. 9, which were calculated for the same V, values. The 
slopes approximate to identical values, with increasing T 
when the V, values are the same. 

Fig. 11. Same as Fig. 9, but for a case also shown in Fig. 5. Fig. 12. Same as Fig. 9, but for the case also shown in Fig. 7. 
Note the resemblance to Fig. 11. 
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Fig. 13. Same as Fig. 9, but for a case also shown in Fig. 8. Fig. 14. Same as Fig. 9, but for a case also shown in Fig. 8. 
Compare with Fig. 13 and note that the curves in both figures 
are almost parallel, since V, has the same value (Vz=O) for 
all the curves. 

function V(T),  which are classified in Fig. 4. The 
results are shown in Figs. 5-15, as indicated in Fig. 
4. Figs. 5-8 give the resistance R(T)  on a linear 
scale as a function of the time T and in Figs. 9-15 
the absolute value of the deviation of the resistance 
from the final steady-state value on a logarithmic 
scale is shown as a function of T. The velocity step 
function V(T)  used in Figs. 5-14 is defined as a step 
from an initial steady-state velocity V, at T=O to a 
new velocity V,. Three different classes of this type 
of velocity function can be distinguished from the 
alternatives shown in Fig. 4, namely, (1) positive or 
negative deviations from V,=O, (2) positive or 
negative V, back to V, =O and (3) positive and nega- 
tive steps centred around V=O. A more general defi- 
nition of V(T)  is also adopted; it is defined as 
positive or negative steps AV centred around V,,, 
(positive or negative). This latter definition is used 
in Fig. 15 for the case of small steps (AV= f 1). 

It will be seen from Figs. 5-15 that an exponential 
approximation of R(T) is not generally acceptable. 
When the height of the step in V is below or equal 
to 4 (see Fig. 3 for the significance of this V value), 
the resistance curves are nearly straight lines in the 
logarithmic diagrams (Figs. 9-1 5). This means that 
the exponential approximation (eqs. (4) and (5)) is 
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reasonable in this region. For higher values of the 
convection-velocity step, the logarithmic resistance 
variation is mostly convex upwards. On the linear 
scale the curves, which are upward convex on the 
logarithmic scale, show a steep, almost straight-line 

\\ Vm: 1; 10.' 
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104 I ,  
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Fig. 15. Same as Fig. 9, but for a small step A V =  t. 1 around 
a velocity V,. Note that the curves are almost exponential, 
since the velocity step is small. 
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Fig. 16. Summary of the equivalent time constants 
teq of the resistance relaxation as a function of 
the convection velocity step A V  and the mean 
velocity V,. teq was calculated by fitting an ex- 
ponential approximation to the exact time be- 
haviour of the convection-diffusion resistance. 
The p values indicate different accuracies of the 
exponential approximation, as compared with 
the exact resistance (eq. (9)). If the curves are 
re-plotted with V, on the abscissa, then the 
maxima of rep will fall approximately at V, = - 1 
to -2. The different heights of the maxima for 
different steps correspond to the different initial 
curvature in the [R(T)-R(oo)] plot. 

Fig. 17. The approximate time constant t, as- 
sociated with large T values (dashed curve, from 
eq. (10)) and the equivalent time constant tea 

for a small velocity step (continuous curve, taken 
from Fig. 16). The curve t, can be used as an 
approximation, suitable for analogue computa- 
tions on Teorell's electrohydraulic excitability 

0 - v ~  analogue. 
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rise initially (Figs. 5-7), with a small tendency to 
become sigmoid in some cases (Fig. 7). 

It is striking that the resistance curves with dif- 
ferent initial velocities V, but with the same final 
velocity V, show a general resemblance. This is quite 
obvious, if Figs. 9, 11 and 13 are compared with 
Figs. 10, 12 and 14 respectively. At high values of 
T the logarithmic curves approximate to identical 
slopes for each V, value independent of V,. At 
small T values the principal behaviour is similar for 
curves with the same value of V,. 

Another important feature of the resistance curves 
(Figs. 5-15) is that the time constant, which is in- 
versely related to the slope (K value) of the logarith- 
mic curves, assumes a high value when V, is near 
zero, but is continuously reduced when V, is de- 
creased or increased. 

Numerical time constant 

The exponential approximation of R( T), accord- 
ing to eq. (S ) ,  has been tried in the following way. 
An equivalent time constant teq = 1/K was introduced 

and defined as the time T when the absolute value 
of [R(T)-R(m)]  had decayed to l/e of its initial 
value at T=O. This definition of teq means that the 
exact R(T)  coincides at T =  1/K with the exponential 
approximation, according to eq. (5). As a measure 
of the accuracy of the approximation, the maximum 
relative deviation from the exact value of R(T)  was 
calculated according to the relation 

(9) 

where R(T),, is obtained from eq. (S ) ,  using K= 

The results are shown in Fig. 16, where teq is 
given as a function of V, for a number of values of 
A V. The accuracy of the exponential approximation 
is indicated in the figure as approximate regions, 
where thep  values are below 2%, between 2 and 5 %  
or above 5%.  It  will be found from Fig. 16 that the 
exponential approximation is accurate within 2 % 
when IAV154. 

1/Zeq. 
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Theoretical time constant 

A theoretical expression of the time constant at 
high values of T can be found from eq. (A7). The 
time behaviour of C(X, T )  is determined by a set 
of time constants equal to l/[( V2/2), + (nn),], one for 
each harmonic of order n (see eq. (A7)). For large 
T values, the time constant t, of the first harmonic 
will predominate, since higher harmonics have 
decayed. This means that 

t, = l/[( V,/2), + (n),] when T- 03 (10) 

The time constant t, at large T is thus only de- 
pendent on the instantaneous convection velocity V,. 
This property was also obvious from the numerical 
calculations, as discussed above. 

The variation of t, with V, (eq. (10)) is shown 
in Fig. 17 (dashed curve), together with the teq 

curve for small values of AV (continuous curve). 
The latter curve is identical with the curve for 
AV=O in Fig. 16. The two curves in Fig. 17 show 
a similar behaviour. This follows from the fact dis- 
cussed above, that R(T)  is close to the exponential 
form for small steps (cf. Fig. 15), which means that 
the time constant teq for small values of T in this 
case is approximately equal to the time constant 
t, at large T. For the special case that V,+O at the 
same time as A V-0, the exponential approxima- 
tion is almost exact, with a time constant accord- 
ing to eq. (10). This will be seen from eq. (A9), giv- 
ing a, =O and a3/al = 1/27 under these conditions 
(see also Fig. 15). 

It has also been shown by the present author (11) 
that a linearization of the convection-diffusion equa- 
tions by a method used by Sandblom (12) yields a 
time constant close to the curves in Fig. 17. The 
linearization was accomplished by introducing a 
sinusoidal perturbation in V and the time constant 
was calculated as the inverse value of the charac- 
teristic frequency. 

DISCUSSION 

Conclusions 

The following conclusions may be drawn from the 
results above, as regards the resistance variation due 
to a convection-velocity step. 

1.  The resistance relaxation is approximately expo- 
nential (accuracy within 2%) for steps in the 
velocity V which are less than or equal to 4. 
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2. The time-dependence of the resistance approaches 
the exact exponential form, if one of the follow- 
ing two conditions is fulfilled: (a) T - w  or (b) 
AV-0 and V,-0. 

3. The resistance-response curves for the same final 
velocity V, show a general resemblance, as re- 
gards the shape for small T and the logarithmic 
slope at higher T values. 

4. The equivalent time constant is in general a non- 
linear function of V,, with different values for 
positive and negative velocity steps. 

5. When one of the conditions AV+O or T + w  
is valid, then the time constant may be ap- 
proximated by eq. (10). In these cases the time 
constant is dependent on the value of V, but not 
on Vl. 

Teorell's membrane oscillator 

For a general case the resistance of the convection- 
diffusion model is non-linear, with a relaxational 
behaviour which is dependent not only on the in- 
stantaneous convection velocity but also on the 
previous history of the velocity. Thus, it is difficult 
or perhaps impossible to include a correct, simple 
description of the resistance relaxation in Teorell's 
equations, suitable for analogue computation. The 
approximation used by Teorell is an exponential 
resistance-delay function with a constant rate con- 
stant k. However, on the basis of the conclusions 
stated above, some possible modifications of Teo- 
rell's approximation will be discussed. Two different 
cases are considered. 

1. Free oscillations. For a free-running membrane 
oscillator, the discrepancy between the instantaneous 
and steady-state resistance mostly corresponds to 
values of AV approximately less than 5 (see Fig. 3 
in ref. 2 and Fig. 15 in ref. 13). This means that an 
exponential approximation of R(T), as used by 
Teorell, is adequate for this case. The rate constant, 
on the other hand, is a more complicated function 
in the convection-diffusion model. However, eq. 
(10) may be used as a reasonable compromise. Thus 
i t  is suggested that the rate constant k in Teorell's 
equations should be replaced by the following ex- 
pression: 

where V= vS/D is the normalized convection velocity 
and k = KD/P is the non-normalized rate constant. 
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The introduction of eq. (11) will affect the wave- 
form of the potential oscillations. Since the time 
constant corresponding to eq. (1 1) becomes smaller 
when the absolute V value increases (eq. (10) and 
Fig. 17), it is expected that the rise and the fall of 
the potential oscillations will be faster with the new 
approximation, as compared with Teorell's constant 
k approximation. However, actual analogue-com- 
puter simulations must be performed, in order to 
elucidate the importance of the new approximation. 

2. Voltage clamp. When the electrohydraulic ex- 
citability analogue is subjected to a voltage clamp, 
the step variation in the convection velocity may be 
very high. For this case, the detailed non-linearities 
are described by the complete equations of the con- 
vection-diffusion model. It has been shown by the 
present author (8) that the non-linear behaviour of 
the convection-diffusion conductance conforms well 
to the process of sodium activation in Hodgkin & 
Huxley's mathematical description of the giant axon 
(15). 

APPENDIX 

Analytical solution of the transient concentration 

The solution of eq. (7) is found, using the follow- 
ing conditions (cf. Figs. 1 and 2): 

Boundary conditions 

(1) c(o, t )  = c, = constant. 
(2) c(6, t)  = c2 =constant. 

Initial conditions 

(4) v = v,, when t < 0 

Znput condition 

( 5 )  v = vz,  when t > 0 

The initial condition (3) is the steady-state con- 
centration profile (17, 2), when v=v l ,  which is easily 
calculated from eq. (7) with a/at=O, together with 
the boundary conditions (1) and (2). 

The partial differential equation (7) can be solved, 
using a transformation given by Furth (14): 

c(x, t )  = c*(x, t )  exp (vx/2D - v2t/4D) (A21 

The transformation eq. (A2) applied to eq. (7) gives 

ac* (x, t )  a2 c* (x, t )  
-= D- 

at ax2 

The transformed boundary and initial conditions eq. 
(Al) are 

(1) c*(o, t)  = c1 exp (v;t/4D), when t > 0 

(2) c*(6, t) = cZ exp ( - vz6/2D + vit/4D), 

when t > 0 

x exp (- v,x/2 0) .  (A4) 

Eq. (A3) has the same form as the equation of lin- 
ear flow of heat. The general analytical solution for 
t 20 of eq. (A3) with time-varying boundary condi- 
tions and an initial condition which is a function of 
x has been given by Carslaw & Jaeger (16) in the 
form of a Fourier series: 

2 *  
c*(x, t )  = - 2 exp ( -  Dnzn2 t /# )  sin (nnxld) 

6 1  

x [ I0' c*([, 0) sin (nnEd/G) + (nDn/d) 

x I0+exp (Dn2n2A/S2) {c*(o,A) - ( -- l)"c*(6,A)} dA] 

(-45) 

The integrals in eq. (A5) can be solved after the sub- 
stitution of eq. (A4). Finally, c(x, t)  is calculated 
from eq. (A2), using the expression derived from- 
eq. (A5). This has been done and the result is shown 
in eqs. (A7)-(A9). However, the following normalized 
variables will first be introduced: 

x exp [-(v*/2)2Tl 
m 

x 2 a,  exp [ - (n$ TI sin (nnX) 
1 

(A7) 
where 
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Eqs. (A7)4A9) are thus the solution of eq. (8). In 
order to calculate the transient resistance response, 
eqs. (A7)-(A9) were computed numerically and the 
results were substituted in eq. (3). 

The principal form of the solution of eq. (7) has 
been given by Cole (9) for a single-ion constant-field 
electrodiffusion regime, which is analogous to the 
convection-diffusion system considered here. The 
analogy is established if v is replaced by uFE, 
where u is the ion mobility, F the Faraday constant 
and E the electric field. 
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