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In ref. (30) (Chapter 2) the main principles of analytical goal-setting and formulation 

of analytical quality specifications (AQSpecs) were outlined. From this document it is 

possible to learn how to assess quality specifications according to 'the state of the art 

approach' and 'the biological approach', as well as 'the clinical usefulness approach'. 

Assessment of specifications based on clinical strategies/situations, however, need more 

preparation, starting with a detailed analysis of the problem. There are no simple 

formulas, but there are several applicable models for the purpose, which will be 

described in this chapter. 

4.1. Defining the Clinical Situation/Strategy/Problem 

Before starting the process of assessing the analytical quality requirements, the overall 

situation for which the AQSpecs are to be formulated should be considered, without 

taking models and methods into account: 

a. Is the purpose of the AQSpecs general in nature? e.g. without specifications of the 

clinical use of the laboratory investigation(s) in question? 

Are the AQSpecs specific for a defined clinical situation, e.g. screening, diagnosis, 

other classification, intervention, regulation, monitoring, or more complicated 

situations? 

b. 

c. Are the AQSpecs specific for a scientific investigation? e.g. estimation of 

biological/pathological response, clinical trial, or other defined investigation? 

In the first case (a), the general nature of the purpose (or lack of concrete intentions) 

make the models and the solutions to the problem as general as the purpose for the 
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AQSpecs. The most relevant approach will be to apply a general strategy of 'not 

increasing the measured biological within-subject variation significantly' or of 'sharing 

common reference intervals', where analytical variation is generally included, cp. ref. 

(30). 

In the second case (b) of a defined clinical situation, the following steps should be 

considered: 

b. 1 Specify the clinical situation and define the outcome of the clinical decision 

making process in quantitative terms, e.g. number or fraction of 

misclassifications/misinterpretations, economical consequences etc. This could be 

the outcome of the total strategy/situation or of a well defined part of the 

process. 

b. 2 Define the laboratory investigations, (generic quantities) (9, included in the 

clinical strategy. Are they determinative of the clinical outcome? If not or if the 

significance is doubtful, the assessment process may be difficult to perform or 

the AQSpecs may be uncertain. Therefore, the strategy should be reconsidered, 

aiming at a more clear definition of the impact of the results of laboratory 

investigations. 

In the third case (c) of a scientific investigation, the problem must be described in detail 

and the outcome must be clearly defined. It may be easier to separate the problem into 

a number of subproblems, to be investigated one by one. As the scientific problems may 

be very different, a general formula cannot be given. The steps (b.1 - b.2 above) for a 

defined clinical situation may, however, serve as a guideline for a relevant assessment. 

4.2. Selecting Methods and Tools for Statistical, 

Graphical, and Computer Analysis 

The methods are often designated as 'statistical', 'graphical', or as 'computer' methods. 

Many of the methods are based on general statistics, and for these the three approaches 

will lead to similar specifications, when the same assumptions are made. 

Data for statistical assessment of 'clinical goals' and 'AQSpecs' are generally collected 

according to well defined situations: 
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i) 

ii) 

iii) 

iv) 

v) 

single point measuring (using a value at one time point originating from one or 

several samplings and one or several measurements) for comparison with one 

single reference distribution (unimodal classifcation), 

single point measuring for comparison with two reference distributions (bimodal 

classification) , 
two point monitoring (change compared with sBw), 

several point monitoring (time series), 

other situations. 

The word monitor is here used in the clinical sense ie.: “to keep close and 

constant watch of a condition or function“. 

A ’statistical method’ based on the manual use of tabulated statistical distributions 

(usually gaussian or log-gaussian) does not allow a combination of different types of 

distributions. The ’graphical method’ may be used to illustrate any gaussian or non- 

gaussian distribution, but has got its limitations in combining gaussian analytical variation 

with non-gaussian biological distributions. The ’computer methods’ have no limitations 

in mixing various statistics, graphics, and computational methods. 

The choice between the three types of methods presented below, all involving strong 

elements of statistics, may be a question of avaiiable equipment or of individual taste 

and educational background, but it is also a matter of the complexity of the clinical 

situation studied. 

Statistical (table-look-up) method 

A Gaussian distribution describing a measured biological reference distribution has the 

following parameters: mean value = M, and standard deviation = sT (coefficient of 

variation = CVT). For explanation of abbreviations see rej (7) = Chapter 11 

Any decision limit, DL (cut off point), can be expressed in terms of the parameter 

z = (DL - MT)/sT, and the fractions of the distribution above and below the DL can be 

read off from a statistical table for given z values. 

The effect of analytical bias, B,, is simply calculated from 

z (bias) = (DL - MT + BA)/sT. 

Investigation of the effect of analytical imprecision (sA) is a two step process. First the 

biological standard deviation, sB = (sT2 - sA2)” , and z (ideal) = (DL - MT)/sB are 

calculated. Then, a different value of imprecision, s,, is assumed and the total standard 

deviation, s,, is calculated for this value of imprecision: 
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ST = [SB2 + ,A2]'. 

The combined effect of various values of bias and imprecision can be read off from 

statistical tables using z (combined) = (DL - MT + BA)/sT. Statistical tables may be 

found in most books on statistics; see e.g. (3, 45). 

Graphical (tail-area) method 

One reference distribution ('uninzodal classification '). 

A gaussian reference distribution can be delineated as a bell-shaped curve in a linear 

plot or, as a straight line in a probit-plot (Fig. 4.2.1.). The bell-shaped presentation may 

be easier to grasp, but more difficult to evaluate, whereas the probit-plot is, after some 

practice, relatively easy to evaluate [for the theory c$ e.g. Bliis (2) or Gowans et al. (IS)]. 

A positive bias will move the distribution upwards resulting in a lower fraction below 

DL and a higher above DL (Fig. 4.2.2). In fact, a bias will have the same effect as 

moving the DL - but with the opposite sign. 

Evaluation of the effect of imprecision needs a few calculations like those for the 

statistical table-look-up method. The ideal biological distribution will show up as a more 

narrow bell-shaped curve and in the probit-plot the slope of the line will become steeper 

(Fig. 4.2.3). 

Assumed values of analytical imprecision, sA, can be combined with the ideal biological 

standard deviation, sB, to estimate the corresponding total distributions as illustrated in 

Fig. 4.2.4. 

Non-gaussian reference distributions can sometimes be handled after transformation to 

gaussian, e.g. a log-gaussian distribution, where the logarithmic values are distributed as 

gaussian. Even non-parametric distributions that cannot be transformed in this simple 

way can be evaluated with regard to bias (Fig. 4.2.5), but not with regard to imprecision. 
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Fig. 4.2.1. Graphical presentations of a total Fig. 4.2.2. Same reference distributions as in Fig. 
Oneasured) biological reference distribution (T) 4.2.1., but with a positive bias (dashed lines). In 
with mean = M, and standard deviation = sT, in the example B, = + 0.5 (+  5 U/L) resulting in 
the example 100 U/L and 10 U/L, respec-tively. a smaller fraction below DL (which now 
The decision limit (DL), at 95 U/L ( =  - 0.j sT), is corresponds to - 1.0 sT or zz 0,16) and a larger 
also illustrated. fraction above DL = 0.84 . 
Top: The relative frequency as a function of the 
standard deviation which relates to the 
concentration. DL separates the distribution in 
values below and above DL and the two areas 
represent the corresponding fractions of the total 
distribution. 
Middle: Probit transformation of the same 
distribution cumulated from low values. The 
ordinate indicates the area below any DL (in the 
example DL is - 0.5 sT and the area or fraction is 
2 0.31. 
Bottom: Probit transformation of the same 
distribution cumulated from high values. The 
ordinate indicates the area above any DL (here SD 
- 0.5 sT equal to 95 U/L and corresponding to z 
0.69). 
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FREQUENCY Fig. 4.2.3. Same reference distributions as in Fig 
4.2.1. together with the pure biological distribution 
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values of imprecision 
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(short dashed lines). 

Illustrated for the probit 
transformation with cumu- 
lation from the high 
values, only. 

ST = (82 + SA2 )? 
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Fig. 4.2.5. Illustration of a non- 
.99J DL parametric biological distribu- 
.95- tion and the effect of bias. 
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Probit paper is available from H. W. Peel and Co. Ltd., Jeymer Drive, Greenford, 

Middlesex, UBG 8 NX, England and A.G. Frisinette og Sonner Aps, Egsmark, 8400 

Rbeltoft, Denmark (Sandsynlighedspapir no. 21 10 (linear abscissa) and 2109 (log 

abscissa). 

Two reference distributions (Bimodal classification). 

This procedure is used for single point measuring when two biological reference 

distributions are assumed, representing a diseased (or pre-diseased) and a healthy 

reference sample group. The prevalence for disease is an important parameter which 

may be more or less well-known , but can be varied within reasonable limits in the 

assessment. In the following example for demonstration (Fig. 4.2.6-8) the prevalence for 

sickness and health is equal (=  0.5). The rest of the values of the parameters of the two 

distributions are as follows: for the /iealt/iy reference sample group M, = MT = 103 

nmol/L, sB = 19 nmol/L and for the diseased reference sample group M, = M, = 220 

nmol/L, sB = 36 nmol/L, with a decision limit of 140 nmol/L. In Fig. 4.2.6 the two 

reference distributions are shown in a probit-plot together with the decision limit. 

Assumed values of analytical bias (+5 ,  + 10, + 15, +20 nmol/L) are illustrated in Fig. 

4.2.7. and assumed values of imprecision (5, 10, 15, 20 nmol/L) in Fig. 4.2.8. The same 

procedure may be performed for a given bias and variable imprecision or vice versa in 

order to investigate combined effects. 

The basis for evaluation is the tail-areas representing the number of false positives, FP, 

and false negatives, FN. One way is to calculate the number of FN and FP, but it may 

be easier to compare results expressed as fractions - the sum of misclassifications 

(FP+FN) related to total number of classifications - and to plot these fractions vs bias 

or imprecision. 
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Fig. 4.2.6. Bimodal classification model with the non-diseased reference distribution (MB 
= 103 nmol/L, sB = 19 nmol/L) cumulated from high values and the diseased reference 
distribution (MB = 220 nmol/L, sB = 36 nmol/L) cumulated from low values. The 
decision limit (cut off point) (140 nmol/L) is illustrated as a vertical line. 
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Fig. 4.2.8. Same as in Fig. 4.2.6 together with reference distributions for assumed 
imprecision of 5, 10, 15 and 20 nmol/L 
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Computer based cost analysis method 

Computer programs may be used for calculation of 
- the expected frequency of FN and FP outcome in connection with "bimodal 

classification" using a specified decision limit; 

the cost related to misclassification; 

the optimal discriminatory level in the sense that the costs are minimized; 

the diagnostic sensitivity, specificity and the prediction value of a positive and a 

negative test 

- 

- 
- 

The input data to such a program c j  (23) are 
- mathematical frequency distributions, e.g. gaussian or log-gaussian, representing 

healthy and pathological reference sample groups; 

numerical weights, w1 and w2, representing the relative costs for making 

misclassifications; 

estimates of pre-analytical and analytical imprecision, expressed as coefficients of 

variation, CV,,, and CV,; 

estimate of analytical bias, B,; 

- 

- 

- 

The variances of the simulated reference distributions are calculated from 
sT2 = SB 2 + SA 2 + SpreA 2 

where sB = total biological standard deviation 

sA = total analytical standard deviation 

spreA = pre-analytical standard deviation 

The program calculates the number of FP and FN as the "tail-areas'' cut off by the 

decision limit from the various distributions. The relative loss calculated as the weighted 

sum of false positives and false negatives 

L = w1 * FP + w2 * FN 

The optimal decision limit is determined as the value minimizing the relative loss. 

Diagnostic sensitivity and specificity, predictive values of positive and negative tests are 

calculated from conventional formulas. 

Monte Carlo simulation techniques 

Another computer method of great interest in this connection is the Monte Carlo 

simulation technique, based on random number generators and appropriate frequency 

distributions, and which can be used to generate synthetic data. 

The method has the advantage that the outcome of classification can be studied on a 
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"case-by-case'' basis, considering e.g. repeated measurements and reclassification of 

borderline cases (39). Furthermore, the influence of the size of the reference sample 

groups on the estimated decision limit and the outcome of the classification process can 

be studied. 

This method is described in more detail in ref. (20; p.57) as applied to screening of 

hypocalcaemia; and in ref. (39) as applied to "bimodal screening" of pancreatic 

insufficiency with use of serum pancreatic iso-amylase measurements. 

Biodynamic modelling technique 

Monte Carlo techniques are also very useful in combination with computer simulation 

models describing the pathophysiological and/or biochemical dynamics of selected 

quantities of special interest in diagnosis or monitoring of patients. A good introduction 

to this approach is found in ref. (53) as applied to the design of an allopurinol loading 

test for characterization of liver function. In this paper the analytical requirements were 

assessed in connection with an optimized design of the blood sampling schedule in terms 

of number and location of measurements required for identification of diagnostic 

parameters derived from a combined biochemical and physiological compartmental 

model. Illustrative examples of the same technique are found in refs. (21, 22, 31, 41). 

4.3. Assessment Procedure 

Prerequisites 

Specification of: 

1. The clinical strategy and the perceived consequences of the results, expressed in 

quantitative terms as a measurable outcome. 

2.  The distribution(s) of reference values, and decision limits (DL), estimates of 

biological within- and between-subject variation, preanalytical factors, and the 

characteristics of the analytical measurement and quality control procedures. 

Procedure: 

1. 

2. 

Describe the ideal error-free situation and calculate the clinical outcome. 

Assume various analytical conditions: systematic error (bias) and random error 

(imprecision); one at the time and in combinations. 

Calculate the outcome for the various analytical conditions. 3. 
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4. Decide on the acceptable decrease in outcome and determine the maximal allowable 

combinations of systematic and random error. Preanalytical variation ought to be 

included in the calculations. 

Illustrative examples: 

In Fig. 4.3.1 references to published models for assessing clinical goals and AQSpecs, and 

some applications of these models, are listed according to name of first author and year 

of publication. These references may give suggestions and guidance for your assessment 

process. The papers are grouped according to the scheme in the beginning of Chapter 

4.2. To the left in Fig. 4.3.1 it is indicated whether the problem is investigated according 

to Vie biological approach' or Vie clinical usefirlness approach', and to the right whether 

it deals with imprecision (s, or CV,) or bias (BA), difference in bias between two 

laboratories (BbL) or at two different occasions in the same laboratory (BwL). For 

definition of imprecision, bias and systematic error see ref. (7) (Chapter 11). From left 

to right papers are listed dealing with: single point measuring, two point monitoring, 

several point monitoring, and other situations. 

When papers deal with several clinical situations and models the same reference is listed 

in all the appropriate areas. To provide some guidance in the selection of relevant 

literature for your own assessment some main clinical approaches/models will be 

commented on [cf: ref. (30) (Chapter 2) for the biological models]. 

1. 

This is used for single point measuring where only one biological reference distribution 

is assumed and the clinical interpretation is gradual, e.g. in S--Cholesterol screening 

where high values indicate increased risk of heart diseases (47) (in contrast to the use 

of cholesterol in diagnosis of familiar hypercholesterolaemia, which is a clearly bimodal 

classification problem). 

One reference distribution ('Uninzodal classification ') 

Using the graphical example in Figs. 4.2.1 - 4 and 4.2.4. alone or in combination, it is 

always possible to study the effect of imprecision and bias on the clinical decisions. 

The specific situation depends on the problem under investigation and the reader is 

referred to four ref: (19, 36, 54, 55). 
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2. 

From the demonstration example of a bimodal classification (Fig. 4.2.6) it can be seen 

that with B, and sA equal to zero the fraction of misclassified "diseased" is about 0.01 

and the fraction of misclassified 'non-diseased' about 0.02 of the total number of 

classified; thus for a prevalence of 0.50 the total fraction of misclassified individuals is 

equal to 0.04. 

From Fig. 4.2.7. and Fig. 4.2.8. it is possible to graphically estimate the effect of bias 

and imprecision, respectively. Furthermore, it is possible to construct graphs that 

combine the effects of bias and imprecision. It will be the tolerable fraction of 

misclassifications that determines the analytical quality specifications. 

Two reference distributions ('Bimodal clussification ') 

The following comments or conclusions can be made from the references: 

a. 

b. 

C. 

d. 

3. 

Functions of misclassifications have been presented as combinations of imprecision 

and bias (23, 27, 39) and imprecision and decision limits where also nomograms 

describing the type are given (48, 58). 

In the paper of Jacobson et al. (39) a strategy of repeated measurements, has been 

investigated using Monte Carlo computer simulation technique. It was found that the 

influence of pre-analytical variation, duplicate measurements, reclassification of 

borderline cases and sizes of reference sample groups had some importance, but that 

the cost weighting ratio of false negatives: false positives was critical for the results. 

Ross (49) used a theoretical model based on strict assumptions about the reference 

distributions, and the outcome was presented as efficiency. 

In the work of Wide and Dahlberg (56) the analytical precision was optimized using 

a more sensitive function test for evaluation. 

Two point monitoring 

A unimodal model of repeated measuring has been described by Harris, from a 

statistical point of view, including the biological within-subject variation (24). An 

overlapping paper by Hyltoft Petersen et al. (33) describes the conversion of a two-point 

monitoring into a bimodal classification problem by calculating the ratios between 

measurement results from the same individual. 

A series of investigations on 'the clinical usefulness approach' (10, 11, 15, 43, 50, 51) 

have been described and discussed previously (30) (Chapter 2). These papers deal with 

how physicians and practitioners on the average react on a change in test result. In 

233 



another series of papers a model is studied for evaluation of quality specifications in 

situations, where there is an agreement that a certain change of the analytical result 

ought to lead to clinical actions (15, 28, 34, 35, 44). 

The predetermined change, A, is often empirical in nature, and the evaluation of quality 

specifications are based on the assumption that under stable (steady-state) conditions the 

probability of measuring a change 2 A should be less than a certain probability, P. 

The general formula is 

A 2 zp G (sA2 + SB; )' + BwL 

where the zp factor is set to a value corresponding to a specified probability (P), sA and 

sBW are the analytical and biological within-subject variation, respectively, and B,, is a 

possible difference in bias, either within the same instrument at the two measurement 

occasions or when two instruments with different bias are used interchangeable. (If the 

two measurements were made in different laboratories B,L is used.) 

Based on this formula the interrelationships between sA and B,, can be expressed, when 

sBw for the quantity is known as well as the predetermined change ( A )  or the probability 

for exceeding A under steady state conditions. Rearrangement of the formula gives 

B,, I A - zp . 6 ( s A 2  + sB$ )', from which BwL can be calculated for various 

assumed values of sA. The shapes of curves for combined values of BwL and sA depend 

on A and zp as illustrated in Fig. 4.3.2 for HbA,, used for control of diabetic patients. 

HbA,, is measured as an amount-of-substance fraction and expressed in per cent. The 

diagram shows that the maximal CV, is nearly the same when you use A = 1% which 

gives a probability for a change of 0.80 and A = 2% which gives a probability for a 

change of 0.99. 
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B.4 

Fig. 4.3.2. Combined values of maximal 
imprecision (CV,) and change in 
analytical bias (BA) between the 
measurements of two samples during 
monitoring of a patient for gluconated 
haemoglobin. The two curves illustrate 
A-values of 1.0 and 2.0% HbA,, with 
the corresponding P-values 0.80 and 
0.99. The data used in this figure are 
obtained from (44). 
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If bias (BwL or BbL) is assumed to be zero another rearrangement of the formula can 

be made, which gives: 

sA s [ (A2/2zp2) - sBw2]'. This expression has been used to study if multiple sampling 

can give a more accurate estimate of A, which can help to reduce the requirements on 

sA. This approach is only possible for components with comparatively high sBw-values 

(e.g. S--Creatinine and S--Cholesterol) (6). 

4. Several point inonitonng 

One example of the drug-monitoring is described in refs (12,13). Three other papers (21, 

22, 31) deal with complicated turn-over models investigated by computer simulation 

techniques, which would need more space than available to describe in detail. 

One paper (44) deals with the same situation of keeping concentrations of a selected 

quantity below (or above) a certain value in the treatment of a patient. Even if the 

problem is different from the unimodal classification, the theoretical handling is similar. 

It is, however, easier here to introduce the extra information or assumption, by looking 

at patients with decision limits above (or below) the value, assuming that they should be 

interpreted analogously. 
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5. Other situations 

These are very different in nature covering special aspects of quality specifications. 
- Two papers (26, 46) deal with computer - aided diagnosis of jaundice, where the 

clinical chemical quantities are not determinative. This leads to the (expected) 

conclusion that analytical quality here is less important. 

Two papers (14, 42) deal with preanalytical variation related to sampling technique. 

In one paper computer supported decision analysis is used (57). 

One theoretical paper (16) deals with quality specifications for interference. 

Finally a paper (9) deals with the actual quality of reference intervals related to the 

current analytical quality. 

- 
- 
- 
- 
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