Trends in statin utilization and ischemic heart disease mortality in Lithuania and Sweden, 2000–2020
Abstract
Aims: To compare statin utilization and ischemic heart disease (IHD) mortality trends in Lithuania and Sweden and to assess correlations between the total utilization of statins and IHD mortality.
Methods: An ecological study assessing time trends in statin utilization (DDDs per 1000 inhabitants per day; DDD/TID) and IHD mortality in Lithuania and Sweden between 2000 and 2020. Statin utilization data in Lithuania were wholesale trade data, and Swedish data were drugs dispensed at pharmacies. IHD mortality data were extracted from national databases as rates per 100 000 inhabitants. Associations between statin utilization and IHD mortality in Lithuania and Sweden were examined using Spearman’s rank and Pearson’s correlation coefficients, respectively.
Results: Statin utilization increased from 16.8 to 135.8 DDD/TID in Sweden and from 0.2 to 61.8 DDD/TID in Lithuania between 2000 and 2020. Medium intensity was the most common statin dosage in Lithuania, while Sweden used more high intensity than moderate-intensity statins from 2017. IHD mortality in Lithuania remained high between 2000 and 2020 (from 359.1 to 508.8 deaths per 100 000 population), while it decreased markedly in Sweden (from 226.87 to 88.7 deaths per 100 000 population). IHD mortality and statin utilization were inversely correlated in Sweden (r = -0.993, P < 0.001), while a positive correlation was found in Lithuania (rs = 0.871, P < 0.001).
Conclusion: Despite the growing statin utilization in both countries, Lithuania recorded a slight increase in IHD mortality rates unlike the situation in Sweden. This indicates room for improvement in the management of modifiable cardiovascular risk factors in Lithuania including how statins are prescribed and used in clinical practice.
Downloads
References
2. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37(42):3232–45. doi: 10.1093/eurheartj/ehw334
3. Hammond-Haley M, Hartley A, Essa M, DeLago AJ, Marshall DC, Salciccioli JD, et al. Trends in Ischemic Heart Disease and Cerebrovascular Disease Mortality in Europe: an Observational Study 1990–2017. J Am Coll Cardiol. 2021;77(13):1697–1698. doi: 10.1016/j.jacc.2021.02.013
4. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. doi: 10.1093/eurheartj/ehx144
5. Wood D, De Backer G, Faergeman O, Graham I, Mancia G, Pyörälä K, et al. Prevention of coronary heart disease in clinical practice: recommendations of the Second Joint Task Force of European and other Societies on Coronary Prevention. Atherosclerosis.1998;140(2):199–270. doi: 10.1016/S0021-9150(98)90209-X
6. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41(1):111–88.
7. Cholesterol Treatment Trialists’ (CTT) Collaboration, Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405. doi: 10.1016/S0140-6736(14)61368-4
8. Blais JE, Wei Y, Yap KKW, Alwafi H, Ma TT, Brauer R, et al. Trends in lipid-modifying agent use in 83 countries. Atherosclerosis. 2021;328:44–51. doi: 10.1016/j.atherosclerosis.2021.05.016
9. Makarevičius G, Rinkūnienė E, Badarienė J. National trends in statin use in Lithuania from 2010 to 2021. Medicina (Kaunas). 2022;59(1):37. doi: 10.3390/medicina59010037
10. Brooke HL, Talbäck M, Hörnblad J, Johansson LA, Ludvigsson JF, Druid H, et al. The Swedish cause of death register. Eur J Epidemiol. 2017;32(9):765–73. doi: 10.1007/s10654-017-0316-1
11. Eurostat. Causes of death (hlth_cdeath). National Reference Metadata in Single Integrated Metadata Structure (SIMS) Compiling agency: Institute of Hygiene, Lithuania. [cited 06 Feb 2024]. Available from: https://ec.europa.eu/eurostat/cache/metadata/en/hlth_cdeath_sims.htm.
12. Wettermark B, Hammar N, Fored M, Leimanis A, Otterblad Olausson P, Bergman U, et al. The new Swedish prescribed drug register – Opportunities for pharmacoepidemiological research and experience from the first six months. Pharmacoepidemiol Drug Saf. 2007;16(7):726–35. doi: 10.1002/pds.1294
13. WHOCC – ATC/DDD Index. [cited 22 Feb 2023]. Available from: https://www.whocc.no/atc_ddd_index/?code=C10AA&showdescription=no
14. Stone NJ., Robinson JG., Lichtenstein AH., Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. J Am Coll Cardiol. 2014;63(25_Part_B):2889–934. doi: 10.1016/j.jacc.2013.11.002
15. Rodriguez F, Maron DJ, Knowles JW, Virani SS, Lin S, Heidenreich PA. Association between intensity of statin therapy and mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2017;2(1):47. doi: 10.1001/jamacardio.2016.4052
16. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763–8. doi: 10.1213/ANE.0000000000002864
17. Higienos Institutas. Health statistics portal of Institute of Hygiene. Health statistics report – Causes of deaths. [cited 06 Feb 2024]. Available from: https://stat.hi.lt/default.aspx?report_id=229
18. Ford ES, Capewell S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu Rev Public Health. 2011;32:5–22. doi: 10.1146/annurev-publhealth-031210-101211
19. Eriksson M, Holmgren L, Janlert U, Jansson JH, Lundblad D, Stegmayr B, et al. Large improvements in major cardiovascular risk factors in the population of northern Sweden: the MONICA study 1986–2009. J Intern Med. 2011;269(2):219–31. doi: 10.1111/j.1365-2796.2010.02312.x
20. Laucevičius A, Rinkūnienė E, Petrulionienė Ž, Ryliškytė L, Jucevičienė A, Puronaitė R, et al. Trends in cardiovascular risk factor prevalence among Lithuanian middle-aged adults between 2009 and 2018. Atherosclerosis. 2020;299:9–14. doi: 10.1016/j.atherosclerosis.2020.02.025
21. Mannsverk J, Wilsgaard T, Mathiesen EB, Løchen ML, Rasmussen K, Thelle DS, et al. Trends in modifiable risk factors are associated with declining incidence of hospitalized and nonhospitalized acute coronary heart disease in a population. Circulation. 2016;133(1):74–81. doi: 10.1161/CIRCULATIONAHA.115.016960
22. Kristenson M, Kucinskiene Z, Bergdahl B, Orth-Gomér K. Risk factors for coronary heart disease in different socioeconomic groups of Lithuania and Sweden--the LiVicordia Study. Scand J Public Health. 2001;29(2):140–50. doi: 10.1177/14034948010290020101
23. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532–61. doi: 10.1016/S0140-6736(16)31357-5
24. Viigimaa M, Erglis A, Latkovskis G, Mäeots E, Petrulionienė Ž, Šlapikas R, et al. Prevalence of dyslipidemia in statin-treated patients in the Baltic states (Estonia, Latvia, and Lithuania): results of the Dyslipidemia International Study (DYSIS). Medicina. 2014;50(1):44–53. doi: 10.1016/j.medici.2014.05.003
25. Ödesjö H, Björck S, Franzén S, Hjerpe P, Manhem K, Rosengren A, et al. Adherence to lipid-lowering guidelines for secondary prevention and potential reduction in CVD events in Swedish primary care: a cross-sectional study. BMJ Open. 2020;10(10):e036920. doi: 10.1136/bmjopen-2020-036920
26. van Staa TP, Smeeth L, Ng ESW, Goldacre B, Gulliford M. The efficiency of cardiovascular risk assessment: do the right patients get statin treatment? Heart. 2013;99(21):1597–602. doi: 10.1136/heartjnl-2013-303698
27. Wallach Kildemoes H, Vass M, Hendriksen C, Andersen M. Statin utilization according to indication and age: a Danish cohort study on changing prescribing and purchasing behaviour. Health Policy. 2012;108(2):216–27. doi: 10.1016/j.healthpol.2012.08.008
28. Pettersson B, Hoffmann M, Wändell P, Levin LÅ. Utilization and costs of lipid modifying therapies following health technology assessment for the new reimbursement scheme in Sweden. Health Policy. 2012;104(1):84–91. doi: 10.1016/j.healthpol.2011.10.010
29. Ofori-Asenso R, Jakhu A, Zomer E, Curtis AJ, Korhonen MJ, Nelson M, et al. Adherence and persistence among statin users aged 65 years and over: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci. 2018;73(6):813–9. doi: 10.1093/gerona/glx169
30. Rezende Macedo do Nascimento RC, Mueller T, Godman B, MacBride Stewart S, Hurding S, de Assis Acurcio F, et al. Real‐world evaluation of the impact of statin intensity on adherence and persistence to therapy: a Scottish population‐based study. Br J Clin Pharmacol. 2020;86(12):2349–61. doi: 10.1111/bcp.14333
31. Mazhar F, Hjemdahl P, Clase CM, Johnell K, Jernberg T, Sjölander A, et al. Intensity of and adherence to lipid‐lowering therapy as predictors of major adverse cardiovascular outcomes in patients with coronary heart disease. J Am Heart Ass. 2022;11(14):e025813. doi: 10.1161/JAHA.122.025813
32. Treciokiene I, Bratcikoviene N, Gulbinovic J, Wettermark B, Taxis K. Non-persistence to antihypertensive drug therapy in Lithuania. Eur J Clin Pharmacol 2022;78(10):1687–1696. doi: 10.1007/s00228-022-03369-0
33. Chang AY, Cullen MR, Harrington RA, Barry M. The impact of novel coronavirus COVID-19 on noncommunicable disease patients and health systems: a review. J Intern Med. 2021;289(4):450–62. doi: 10.1111/joim.13184
34. Tornhammar P, Jernberg T, Bergström G, Blomberg A, Engström G, Engvall J, et al. Association of cardiometabolic risk factors with hospitalisation or death due to COVID-19: population-based cohort study in Sweden (SCAPIS). BMJ Open 2021;11(9):e051359. doi: 10.1136/bmjopen-2021-051359
35. Diaz-Arocutipa C, Melgar-Talavera B, Alvarado-Yarasca Á, Saravia-Bartra MM, Cazorla P, Belzusarri I, et al. Statins reduce mortality in patients with COVID-19: an updated meta-analysis of 147 824 patients. Int J Infect Dis. 2021;110:374–381. doi: 10.1016/j.ijid.2021.08.004
36. Kluge HHP, Wickramasinghe K, Rippin HL, Mendes R, Peters DH, Kontsevaya A, et al. Prevention and control of non-communicable diseases in the COVID-19 response. Lancet. 2020;395(10238):1678–1680. doi: 10.1016/S0140-6736(20)31067-9
37. Axenhus M, Schedin-Weiss S, Winblad B, Wimo A. Changes in mortality trends amongst common diseases during the COVID-19 pandemic in Sweden. Scand J Public Health. 2022;50(6):748–755. doi: 10.1177/14034948211064656
38. Global Cardiovascular Risk Consortium, Magnussen C, Ojeda FM, Leong DP, Alegre-Diaz J, Amouyel P, et al. Global effect of modifiable risk factors on cardiovascular disease and mortality. N Engl J Med. 2023;389(14):1273–85. doi: 10.1056/NEJMoa2206916
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Upsala Medical Society. Read the full Copyright- and Licensing Statement.