From early methods for DNA diagnostics to genomes and epigenomes at high resolution during four decades – a personal perspective
Abstract
In the 1980s, my research career begun with microbial DNA diagnostics at Orion Pharmaceutica in Helsinki, Finland, where I was part of an innovative team that developed novel methods based on the polymerase chain reaction (PCR) and the biotin–avidin interaction. One of our key achievements during this time was the invention of the solid-phase minisequencing method for genotyping single nucleotide polymorphisms (SNPs). In the 1990s, I shifted focus to human genetics, investigating mutations of the ‘Finnish disease heritage’. During this period, I also developed quantitative methods using PCR and minisequencing of mitochondrial mutations and for forensic analyses. In the late 1990s and early 2000s, microarray-based SNP genotyping became a major topic for my research, first in Helsinki and later with my research group at Uppsala University in Sweden. By the mid-2000s, I began collaborating with leading clinicians on genetics of autoimmune disease, specifically systemic lupus erythematosus and later worked on the classification and clinical outcome of pediatric acute lymphoblastic leukemia, when large-scale genomics and epigenomics emerged. These collaborations, which focused on integrating genomics into clinical practice, lasted almost two decades until I retired from research in 2022. In parallel with my research activities, I led the SNP/DNA Technology Platform in the Wallenberg Consortium North program from 2001 to 2006. I continued as Director of the SNP&SEQ Technology Platform, which expanded rapidly during the 2010s, and became part of Science for Life Laboratory in 2013. Today (in 2024), the SNP&SEQ Technology Platform is one of the largest units of the Swedish National Genomics Infrastructure hosted by SciLifeLab. The present article provides a personal perspective on nearly four decades of research, highlighting projects and methods I found particularly exciting or important.
Downloads
References
2. Ranki M, Palva A, Virtanen M, Laaksonen M, Söderlund H. Sandwich hybridization as a convenient method for the detection of nucleic acids in crude samples. Gene. 1983;21(1–2):77–85. doi: 10.1016/0378-1119(83)90149-X
3. Virtanen M, Palva A, Laaksonen M, Halonen P, Söderlund H, Ranki M. Novel test for rapid viral diagnosis: detection of adenovirus in nasopharyngeal mucus aspirates by means of nucleic-acid sandwich hybridisation. Lancet. 1983;1(8321):381–3. doi: 10.1016/S0140-6736(83)91500-3
4. Virtanen M, Syvänen AC, Oram J, Söderlund H, Ranki M. Cytomegalovirus in urine: detection of viral DNA by sandwich hybridization. J Clin Microbiol. 1984;20(6):1083–8. doi: 10.1128/jcm.20.6.1083-1088.1984
5. Syvänen AC, Tchen P, Ranki M, Söderlund H. Time-resolved fluorometry: a sensitive method to quantify DNA-hybrids. Nucleic Acids Res. 1986;14(2):1017–28. doi: 10.1093/nar/14.2.1017
6. Dahlén P, Syvänen AC, Hurskainen P, Kwiatkowski M, Sund C, Ylikoski J, et al. Sensitive detection of genes by sandwich hybridization and time-resolved fluorometry. Mol Cell Probes. 1987;1(2):159–68. doi: 10.1016/0890-8508(87)90024-7
7. Syvänen AC, Laaksonen M, Söderlund H. Fast quantification of nucleic acid hybrids by affinity-based hybrid collection. Nucleic Acids Res. 1986;14(12):5037–48. doi: 10.1093/nar/14.12.5037
8. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50. doi: 10.1016/0076-6879(87)55023-6
9. Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262(4):56–61, 64–5. doi: 10.1038/scientificamerican0490-56
10. Syvänen AC, Bengtström M, Tenhunen J, Söderlund H. Quantification of polymerase chain reaction products by affinity-based hybrid collection. Nucleic Acids Res. 1988;16(23):11327–38. doi: 10.1093/nar/16.23.11327
11. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320. doi: 10.1038/nature04226
12. Touma M. COVID-19: molecular diagnostics overview. J Mol Med (Berl). 2020;98(7):947–54. doi: 10.1007/s00109-020-01931-w
13. Syvänen AC, Aalto-Setälä K, Kontula K, Söderlund H. Direct sequencing of affinity-captured amplified human DNA application to the detection of apolipoprotein E polymorphism. FEBS Lett. 1989;258(1):71–4. doi: 10.1016/0014-5793(89)81618-7
14. Paik YK, Chang DJ, Reardon CA, Davies GE, Mahley RW, Taylor JM. Nucleotide sequence and structure of the human apolipoprotein E gene. Proc Natl Acad Sci U S A. 1985;82(10):3445–9. doi: 10.1073/pnas.82.10.3445
15. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622–30. doi: 10.1126/science.3283935
16. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3. doi: 10.1126/science.8346443
17. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7. doi: 10.1073/pnas.74.12.5463
18. Syvänen AC, Hultman T, Aalto-Setälä K, Söderlund H, Uhlén M. Genetic analysis of the polymorphism of the human apolipoprotein E using automated solid-phase sequencing. Genet Anal Tech Appl. 1991;8(4):117–23. doi: 10.1016/1050-3862(91)90027-O
19. Syvänen AC, Aalto-Setälä K, Harju L, Kontula K, Söderlund H. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics. 1990;8(4):684–92. doi: 10.1016/0888-7543(90)90255-S
20. Jalanko A, Kere J, Savilahti E, Schwartz M, Syvänen AC, Ranki M, et al. Screening for defined cystic fibrosis mutations by solid-phase minisequencing. Clin Chem. 1992;38(1):39–43. doi: 10.1093/clinchem/38.1.39
21. Syvänen AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet. 2001;2(12):930–42. doi: 10.1038/35103535
22. Norio R. Finnish disease heritage II: population prehistory and genetic roots of Finns. Hum Genet. 2003;112(5–6):457–69. doi: 10.1007/s00439-002-0876-2
23. Sajantila A, Salem AH, Savolainen P, Bauer K, Gierig C, Pääbo S. Paternal and maternal DNA lineages reveal a bottleneck in the founding of the Finnish population. Proc Natl Acad Sci U S A. 1996;93(21):12035–9. doi: 10.1073/pnas.93.21.12035
24. Ikonen E, Baumann M, Grön K, Syvänen AC, Enomaa N, Halila R, et al. Aspartylglucosaminuria: cDNA encoding human aspartylglucosaminidase and the missense mutation causing the disease. EMBO J. 1991;10(1):51–8. doi: 10.1002/j.1460-2075.1991.tb07920.x
25. Aula P, Raivio K, Autio S. Enzymatic diagnosis and carrier detection of aspartylglucosaminuria using blood samples. Pediatr Res. 1976;10(6):625–9. doi: 10.1203/00006450-197606000-00012
26. Syvänen AC, Ikonen E, Manninen T, Bengtström M, Söderlund H, Aula P, et al. Convenient and quantitative determination of the frequency of a mutant allele using solid-phase minisequencing: application to aspartylglucosaminuria in Finland. Genomics. 1992;12(3):590–5. doi: 10.1016/0888-7543(92)90452-X
27. Isoniemi A, Hietala M, Aula P, Jalanko A, Peltonen L. Identification of a novel mutation causing aspartylglucosaminuria reveals a mutation hotspot region in the aspartylglucosaminidase gene. Hum Mutat. 1995;5(4):318–26. doi: 10.1002/humu.1380050408
28. Suomalainen A, Kollmann P, Octave JN, Söderlund H, Syvänen AC. Quantification of mitochondrial DNA carrying the tRNA(8344Lys) point mutati on in myoclonus epilepsy and ragged-red-fiber disease. Eur J Hum Genet. 1993;1(1):88–95. doi: 10.1159/000472391
29. Suomalainen A, Majander A, Pihko H, Peltonen L, Syvänen AC. Quantification of tRNA3243(Leu) point mutation of mitochondrial DNA in MELAS patients and its effects on mitochondrial transcription. Hum Mol Genet. 1993;2(5):525–34. doi: 10.1093/hmg/2.5.525
30. Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature. 1985;314(6006):67–73. doi: 10.1038/314067a0
31. Vuorio AF, Sajantila A, Hämäläinen T, Syvänen AC, Ehnholm C, Peltonen L. Amplification of the hypervariable region close to the apolipoprotein B gene: application to forensic problems. Biochem Biophys Res Commun. 1990;170(2):616–20. doi: 10.1016/0006-291X(90)92136-N
32. Syvänen AC, Sajantila A, Lukka M. Identification of individuals by analysis of biallelic DNA markers, using PCR and solid-phase minisequencing. Am J Hum Genet. 1993;52(1):46–59.
33. Budowle B, Sajantila A. Short tandem repeats – how microsatellites became the currency of forensic genetics. Nat Rev Genet. 2024;25(7):450–1. doi: 10.1038/s41576-024-00721-1
34. Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet. 1991;49(4):746–56.
35. Bright JA, Taylor D, McGovern C, Cooper S, Russell L, Abarno D, et al. Developmental validation of STRmixTM, expert software for the interpretation of forensic DNA profiles. Forensic Sci Int Genet. 2016;23:226–39. doi: 10.1016/j.fsigen.2016.05.007
36. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70. doi: 10.1126/science.270.5235.467
37. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996;93(20):10614–19. doi: 10.1073/pnas.93.20.10614
38. Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nat Genet. 1999;21(1 Suppl):33–7. doi: 10.1038/4462
39. Pastinen T, Kurg A, Metspalu A, Peltonen L, Syvänen AC. Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 1997;7(6):606–14. doi: 10.1101/gr.7.6.606
40. Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L, Syvänen AC. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 2000;10(7):1031–42. doi: 10.1101/gr.10.7.1031
41. Saetre GP, Borge T, Lindroos K, Haavie J, Sheldon BC, Primmer C, et al. Sex chromosome evolution and speciation in Ficedula flycatchers. Proc Biol Sci. 2003;270(1510):53–9. doi: 10.1098/rspb.2002.2204
42. Borge T, Lindroos K, Nádvorník P, Syvänen AC, Saetre GP. Amount of introgression in flycatcher hybrid zones reflects regional differences in pre and post-zygotic barriers to gene exchange. J Evol Biol. 2005;18(6):1416–24. doi: 10.1111/j.1420-9101.2005.00964.x
43. Lithell H, Sundström J, Arnlöv J, Björklund K, Hänni A, Hedman A, et al. Epidemiological and clinical studies on insulin resistance and diabetes. Ups J Med Sci. 2000;105(2):135–50. doi: 10.1517/03009734000000060
44. Peltonen L, GenomEUtwin. GenomEUtwin: a strategy to identify genetic influences on health and disease. Twin Res. 2003;6(5):354–60. doi: 10.1375/136905203770326358
45. Wedrén S, Lovmar L, Humphreys K, Magnusson C, Melhus H, Syvänen AC, et al. Oestrogen receptor alpha gene haplotype and postmenopausal breast cancer risk: a case control study. Breast Cancer Res. 2004;6(4):R437–49. doi: 10.1186/bcr811
46. Weedon MN, Frayling TM, Shields B, Knight B, Turner T, Metcalf BS, et al. Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. Diabetes. 2005;54(2):576–81. doi: 10.2337/diabetes.54.2.576
47. Mälarstig A, Tenno T, Johnston N, Lagerqvist B, Axelsson T, Syvänen AC, et al. Genetic variations in the tissue factor gene are associated with clinical outcome in acute coronary syndrome and expression levels in human monocytes. Arterioscler Thromb Vasc Biol. 2005;25(12):2667–72. doi: 10.1161/01.ATV.0000191637.48129.9b
48. Hsu TM, Chen X, Duan S, Miller RD, Kwok PY. Universal SNP genotyping assay with fluorescence polarization detection. Biotechniques. 2001;31(3):560, 562, 564–8, passim. doi: 10.2144/01313rr01
49. Bell PA, Chaturvedi S, Gelfand CA, Huang CY, Kochersperger M, Kopla R, et al. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques. 2002;Suppl:70–2, 74, 76–7. doi: 10.2144/jun0205
50. Raitio M, Lindroos K, Laukkanen M, Pastinen T, Sistonen P, Sajantila A, et al. Y-chromosomal SNPs in Finno-Ugric-speaking populations analyzed by minisequencing on microarrays. Genome Res. 2001;11(3):471–82. doi: 10.1101/gr.156301
51. Lindroos K, Liljedahl U, Raitio M, Syvänen AC. Minisequencing on oligonucleotide microarrays: comparison of immobilisation chemistries. Nucleic Acids Res. 2001;29(13):E69. doi: 10.1093/nar/29.13.e69
52. Liljedahl U, Lind L, Kurland L, Berglund L, Kahan T, Syvänen AC. Single nucleotide polymorphisms in the apolipoprotein B and low density lipoprotein receptor genes affect response to antihypertensive treatment. BMC Cardiovasc Disord. 2004;4(1):16. doi: 10.1186/1471-2261-4-16
53. Lovmar L, Fredriksson M, Liljedahl U, Sigurdsson S, Syvänen AC. Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res. 2003;31(21):e129. doi: 10.1093/nar/gng129
54. Rönnblom L, Alm GV. Systemic lupus erythematosus and the type I interferon system. Arthritis Res Ther. 2003;5(2):68–75. doi: 10.1186/ar625
55. Sigurdsson S, Nordmark G, Göring HHH, Lindroos K, Wiman AC, Sturfelt G, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet. 2005;76(3):528–37. doi: 10.1086/428480
56. Göring HH, Terwilliger JD. Linkage analysis in the presence of errors I: complex-valued recombination fractions and complex phenotypes. Am J Hum Genet. 2000;66(3):1095–106. doi: 10.1086/302797
57. Sigurdsson S, Nordmark G, Garnier S, Grundberg E, Kwan T, Nilsson O, et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet. 2008;17(18):2868–76. doi: 10.1093/hmg/ddn184
58. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900–9. doi: 10.1056/NEJMoa0707865
59. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1228–33. doi: 10.1038/ng.468
60. Sandling JK, Garnier S, Sigurdsson S, Wang C, Nordmark G, Gunnarsson I, et al. A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE. Eur J Hum Genet. 2011;19(4):479–84. doi: 10.1038/ejhg.2010.197
61. Wang C, Sandling JK, Hagberg N, Berggren O, Sigurdsson S, Karlberg O, et al. Genome-wide profiling of target genes for the systemic lupus erythematosus-associated transcription factors IRF5 and STAT4. Ann Rheum Dis. 2013;72(1):96–103. doi: 10.1136/annrheumdis-2012-201364
62. Almlöf JC, Alexsson A, Imgenberg-Kreuz J, Sylwan L, Bäcklin C, Leonard D, et al. Novel risk genes for systemic lupus erythematosus predicted by random forest classification. Sci Rep. 2017;7(1):6236. doi: 10.1038/s41598-017-06516-1
63. Imgenberg-Kreuz J, Carlsson Almlöf J, Leonard D, Alexsson A, Nordmark G, Eloranta ML, et al. DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2018;77(5):736–43. doi: 10.1136/annrheumdis-2017-212379
64. Nordmark G, Kristjansdottir G, Theander E, Appel S, Eriksson P, Vasaitis L, et al. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjögren’s syndrome. Genes Immun. 2011;12(2):100–9. doi: 10.1038/gene.2010.44
65. Imgenberg-Kreuz J, Sandling JK, Almlöf JC, Nordlund J, Signér L, Norheim KB, et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren’s syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis. 2016;75(11):2029–36. doi: 10.1136/annrheumdis-2015-208659
66. Imgenberg-Kreuz J, Almlöf JC, Leonard D, Sjöwall C, Syvänen AC, Rönnblom L, et al. Shared and unique patterns of DNA methylation in systemic Lupus Erythematosus and primary Sjögren’s syndrome. Front Immunol. 2019;10:1686. doi: 10.3389/fimmu.2019.01686
67. Arvidsson G, Czarnewski P, Johansson A, Raine A, Imgenberg-Kreuz J, Nordlund J, et al. Multimodal single-cell sequencing of B cells in primary Sjögren’s syndrome. Arthritis Rheumatol. 2024;76(2):255–67. doi: 10.1002/art.42683
68. Milani L, Lundmark A, Nordlund J, Kiialainen A, Flaegstad T, Jonmundsson G, et al. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation. Genome Res. 2009;19(1):1–11. doi: 10.1101/gr.083931.108
69. Milani L, Lundmark A, Kiialainen A, Nordlund J, Flaegstad T, Forestier E, et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood. 2010; 115(6):1214-25. doi: 10.1182/blood-2009-04-214668.
70. Nordlund J, Bäcklin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 2013;14(9):r105. doi: 10.1186/gb-2013-14-9-r105
71. Nordlund J, Bäcklin CL, Zachariadis V, Cavelier L, Dahlberg J, Öfverholm I, et al. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics. 2015;7(1):11. doi: 10.1186/s13148-014-0039-z
72. Krali O, Marincevic-Zuniga Y, Arvidsson G, Enblad AP, Lundmark A, Sayyab S, et al. Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia. npj Precis Onc. 2023;7(1):131. doi: 10.1038/s41698-023-00479-5
73. Marincevic-Zuniga Y, Dahlberg J, Nilsson S, Raine A, Nystedt S, Lindqvist CM, et al. Transcriptome sequencing in pediatric acute lymphoblastic leukemia identifies fusion genes associated with distinct DNA methylation profiles. J Hematol Oncol. 2017;10(1):148. doi: 10.1186/s13045-017-0515-y
74. Lindqvist CM, Nordlund J, Ekman D, Johansson A, Moghadam BT, Raine A, et al. The mutational landscape in pediatric acute lymphoblastic leukemia deciphered by whole genome sequencing. Hum Mutat. 2015;36(1):118–28. doi: 10.1002/humu.22719
75. Lindqvist CM, Lundmark A, Nordlund J, Freyhult E, Ekman D, Carlsson Almlöf J, et al. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. Oncotarget. 2016;7(39):64071–88. doi: 10.18632/oncotarget.11773
76. Sayyab S, Lundmark A, Larsson M, Ringnér M, Nystedt S, Marincevic-Zuniga Y, et al. Mutational patterns and clonal evolution from diagnosis to relapse in pediatric acute lymphoblastic leukemia. Sci Rep. 2021;11(1):15988. doi: 10.1038/s41598-021-95109-0
77. Álvez MB, Edfors F, Von Feilitzen K, Zwahlen M, Mardinoglu A, Edqvist PH, et al. Next generation pan-cancer blood proteome profiling using proximity extension assay. Nat Commun. 2023;14(1):4308. doi: 10.1038/s41467-023-39765-y
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Upsala Medical Society. Read the full Copyright- and Licensing Statement.