Novel diagnostics for improved treatment of gynecological cancer

  • Ulf Gyllensten Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
Keywords: Gynecological cancer, cervical cancer, ovarian cancer, endometrial cancer, proteomics, biomarkers

Abstract

This paper summarizes the efforts to develop novel biomarkers for diagnosis and screening of the three main gynecological cancers, cervical, endometrial, and ovarian cancer, with an emphasis on research performed during the last 20 years in Uppsala. A cervical cancer screening program has existed in Sweden since 1966 using cytology as the primary test. Over the last two decades, research has provided the scientific base for a transition to self-sampling to improve convenience of the woman and achieve higher population coverage, and use of human papillomavirus as the primary test. Also, efficient prophylactic vaccines and more efficient treatment strategies of women with cervical dysplasia have been introduced. Together, these medical tools have the potential to eradicate cervical cancer by 2120, as envisaged by WHO. By contrast, efficient biomarkers for endometrial and ovarian cancer are still lacking. Through the use of high-throughput proteomics, we have identified novel plasma protein biomarkers to be used in the diagnosis of women with adnexal ovarian mass upon transvaginal ultrasound, and possibly also for early detection in population screening. Similarly, novel biomarkers for the diagnosis of endometrial cancer are being evaluated. To establish a population-based screening program requires careful cost-benefit analyses. One alternative would be to broaden the focus of the current cervical cancer screening program to include also the novel biomarkers for ovarian and endometrial cancer, and thereby achieve screening for all three gynecological cancers. A program that screens for all three diseases could increase motivation to participate and thereby population coverage.

Downloads

Download data is not yet available.

References

1. World Health Organization. Cervical cancer: estimated incidence, mortality, and prevalence worldwide in 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer [cited 2 March 2024].

2. World Cancer Research Fund. Endometrial cancer statistics. Available from: https://www.wcrf.org/preventing-cancer/cancer-statistics/endometrial-cancer-statistics [cited 2 March 2024].

3. World Ovarian Cancer Coalition. The World Ovarian Cancer Coalition Atlas 2018. Available from: https://worldovariancancercoalition.org/wp-content/uploads/2018/10/THE-WORLD-OVARIAN-CANCER-COALITION-ATLAS-2018.pdf.

4. zur Hausen H. Condylomata acuminata and human genital cancer. Cancer Res. 1976;36:794.

5. de Lang A, Wikström I, Wilander E. Significance of HPV tests on women with cervical smears showing ASCUS. Acta Obstet Gynecol Scand. 2005;84:1001–5. doi: 10.1111/j.0001-6349.2005.00825.x

6. Gyllensten U, Gustavsson I, Lindell M, Wilander E. Primary high-risk HPV screening for cervical cancer in post-menopausal women. Gynecol Oncol. 2012;125:343–5. doi: 10.1016/j.ygyno.2012.01.036

7. Stenvall H, Wikström I, Backlund I, Wilander E. Accuracy of HPV test of vaginal smear obtained with a novel self-sampling device. Acta Obstet Gynecol Scand. 2007;86:16–21. doi: 10.1080/00016340601033667

8. Sanner K, Wikström I, Strand A, Lindell M, Wilander E. Self-sampling of the vaginal fluid at home combined with high-risk HPV testing. Br J Cancer. 2009;101:871–4. doi: 10.1038/sj.bjc.6605194

9. Lindell M, Sanner K, Wikström I, Wilander E. Self-sampling of vaginal fluid and high-risk human papillomavirus testing in women aged 50 years or older not attending Papanicolaou smear screening. BJOG. 2012;119:245–8. doi: 10.1111/j.1471-0528.2011.03147.x

10. Wikström I, Lindell M, Sanner K, Wilander E. Self-sampling and HPV testing or ordinary Pap-smear in women not regularly attending screening: a randomised study. Br J Cancer. 2011;105:337–9. doi: 10.1038/bjc.2011.236

11. Josefsson A, Livak K, Gyllensten U. Detection and quantitation of human papillomavirus by using the fluorescent 5’ exonuclease assay. J Clin Microbiol. 1999;37:490–6. doi: 10.1128/JCM.37.3.490-496.1999

12. Ylitalo N, Bergström T, Gyllensten U. Detection of genital human papillomavirus by single-tube nested PCR and type-specific oligonucleotide hybridization. J Clin Microbiol. 1995;33:1822–8. doi: 10.1128/jcm.33.7.1822-1828.1995

13. Moberg M, Gustavsson I, Gyllensten U. Real-time PCR-based system for simultaneous quantification of human papillomavirus types associated with high risk of cervical cancer. J Clin Microbiol. 2003;41:3221–8. doi: 10.1128/JCM.41.7.3221-3228.2003

14. Gustavsson I, Juko-Pecirep I, Backlund I, Wilander E, Gyllensten U. Comparison between the Hybrid Capture 2 and the hpVIR real-time PCR for detection of human papillomavirus in women with ASCUS or low-grade dysplasia. J Clin Virol. 2009;45:85–9. doi: 10.1016/j.jcv.2009.04.012

15. Gustavsson I, Aarnio R, Myrnäs M, Hedlund-Lindberg J, Taku O, Meiring T, et al. Clinical validation of the HPVIR high-risk HPV test on cervical samples applied on the FTA card according to the international guidelines for human papillomavirus DNA test requirements for cervical screening. Virol J. 2019;16:107. doi: 10.1186/s12985-019-1216-7

16. Gustavsson I, Lindell M, Wilander E, Strand A, Gyllensten U. Use of FTA card for dry collection, transportation, and storage of cervical cell specimen to detect high-risk HPV. J Clin Virol. 2009;46:112–6. doi: 10.1016/j.jcv.2009.06.021

17. Gustavsson I, Sanner K, Lindell M, Strand A, Olovsson M, Wikström I, et al. Type-specific detection of high-risk human papillomavirus (HPV) in self-sampled cervicovaginal cells applied to FTA elute cartridge. J Clin Virol. 2011;51:255–8. doi: 10.1016/j.jcv.2011.05.006

18. Maurer K, Luo H, Shen Z, Wang G, Du H, Wang C, et al. Evaluation of a new solid media specimen transport card for high-risk HPV detection and cervical cancer prevention. J Clin Virol. 2016;76:14–9. doi: 10.1016/j.jcv.2015.12.010

19. Catarino R, Vassilakos P, Bilancioni A, Vanden Eynde M, Meyer-Hamme U, Menoud PA, et al. Randomized comparison of two vaginal self-sampling methods for human papillomavirus detection: dry swab versus FTA cartridge. PLoS One. 2015;10:e0143644. doi: 10.1371/journal.pone.0143644

20. Wang SM, Hu SY, Chen W, Chen F, Zhao FH, He W, et al. Feasibility and accuracy evaluation of three human papillomavirus assays for FTA card-based sampling: a pilot study in cervical cancer screening. BMC Cancer. 2015;15:848. doi: 10.1186/s12885-015-1882-9

21. Luo H, Du H, Maurer K, Belinson JL, Wang G, Liu Z, et al. An evaluation of the Cobas4800 HPV test on cervico-vaginal specimens in liquid versus solid transport media. PLoS One. 2016;11:e0148168. doi: 10.1371/journal.pone.0148168

22. Taku O, Meiring TL, Gustavsson I, Phohlo K, Garcia-Jardon M, Mbulawa ZZA, et al. Acceptability of self-collection for human papillomavirus detection in the Eastern Cape, South Africa. PLoS One. 2020;15:e0241781. doi: 10.1371/journal.pone.0241781

23. Gustavsson I, Aarnio R, Berggrund M, Hedlund-Lindberg J, Sanner K, Wikström I, et al. Randomised study of HPV prevalence and detection of CIN2+ in vaginal self-sampling compared to cervical specimens collected by medical personnel. Int J Cancer. 2019;144:89–97. doi: 10.1002/ijc.31637

24. Aarnio R, Isacson I, Sanner K, Gustavsson I, Gyllensten U, Olovsson M. Comparison of vaginal self-sampling and cervical sampling by medical professionals for the detection of HPV and CIN2+: a randomized study. Int J Cancer. 2021;148:3051–9. doi: 10.1002/ijc.33482

25. Sanner K, Wikström I, Gustavsson I, Wilander E, Lindberg JH, Gyllensten U, et al. Daily self-sampling for high-risk human papillomavirus (HR-HPV) testing. J Clin Virol. 2015;73:1–7. doi: 10.1016/j.jcv.2015.09.016

26. Lindström A, Sanchez Hermansson R, Gustavsson I, Hedlund-Lindberg J, Gyllensten U, Olovsson M. Cervical dysplasia in elderly women performing repeated self-sampling for HPV testing. PLoS One. 2018;13:e0207714. doi: 10.1371/journal.pone.0207714

27. Hermansson RS, Olovsson M, Gustavsson I, Gyllensten U, Lindkvist O, Lindberg JH, et al. Incidence of oncogenic HPV and HPV-related dysplasia five years after a negative HPV test by self-sampling in elderly women. Infect Agent Cancer. 2022;17:42. doi: 10.1186/s13027-022-00453

28. Östensson E, Hellström AC, Hellman K, Gustavsson I, Gyllensten U, Wilander E, et al. Projected cost-effectiveness of repeat high-risk human papillomavirus testing using self-collected vaginal samples in the Swedish cervical cancer screening program. Acta Obstet Gynecol Scand. 2013;92:830–40. doi: 10.1111/aogs.12143

29. Aarnio R, Östensson E, Olovsson M, Gustavsson I, Gyllensten U. Cost-effectiveness analysis of repeated self-sampling for HPV testing in primary cervical screening: a randomized study. BMC Cancer. 2020;20:645. doi: 10.1186/s12885-020-07085-9

30. Ylitalo N, Sørensen P, Josefsson AM, Magnusson PK, Andersen PK, Pontén J, et al. Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ: a nested case-control study. Lancet. 2000;355:2194–8. doi: 10.1016/S0140-6736(00)02402-8

31. Josefsson AM, Magnusson PK, Ylitalo N, Sørensen P, Qwarforth-Tubbin P, Andersen PK, et al. Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case-control study. Lancet. 2000;355:2189–93. doi: 10.1016/S0140-6736(00)02401-6

32. Berggrund M, Gustavsson I, Aarnio R, Hedlund-Lindberg J, Sanner K, Wikström I, et al. HPV viral load in self-collected vaginal fluid samples as a predictor for the presence of cervical intraepithelial neoplasia. Virol J. 2019;16:146. doi: 10.1186/s12985-019-1253-2

33. Gyllensten U, Sanner K, Gustavsson I, Lindell M, Wikström I, Wilander E. Short-time repeat high-risk HPV testing by self-sampling for screening of cervical cancer. Br J Cancer. 2011;105:694–7. doi: 10.1038/bjc.2011.277

34. Gustavsson I, Aarnio R, Berggrund M, Hedlund-Lindberg J, Strand AS, Sanner K, et al. Randomised study shows that repeated self-sampling and HPV test has more than twofold higher detection rate of women with CIN2+ histology than Pap smear cytology. Br J Cancer. 2018;118:56–64. doi: 10.1038/bjc.2017.485

35. World Health Organization. Self-care interventions for health: WHO consolidated guideline. Available from: https://www.who.int/publications/i/item/WHO-SRH-23.1 [cited 17 April 2023].

36. Bruni L, Serrano B, Roura E, Alemany L, Cowan M, Herrero R, et al. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. Lancet. 2022;10:e1115–27. doi: 10.1016/S2214-109X(23)00240-1

37. World Health Organization. WHO prequalifies additional HPV test expanding options as countries pursue cervical cancer elimination. Available from: https://www.who.int/news/item/14-06-2023-who-prequalifies-additional-hpv-test-expanding-options-as-countries-pursue-cervical-cancer-elimination [cited 14 June 2023].

38. Spayne J, Hesketh T. Estimate of global human papillomavirus vaccination coverage: analysis of country-level indicators. BMJ Open. 2021;11:e052016. doi: 10.1136/bmjopen-2021-052016

39. Our World in Data. Human papillomavirus vaccine immunization schedule. Available from: https://ourworldindata.org/grapher/human-papillomavirus-vaccine-immunization-schedule [cited 9 Jan 2025].

40. World Health Organization. WHO adds an HPV vaccine for single-dose use. Available from: https://www.who.int/japan/news/detail-global/04-10-2024-who-adds-an-hpv-vaccine-for-single-dose-use [cited 4 Oct 2024].

41. UNICEF. Closing the gap: UNICEF bolsters country efforts to increase HPV vaccination. Available from: https://www.unicef.org/supply/stories/closing-gap-unicef-bolsters-country-efforts-increase-hpv-vaccination [cited 25 April 2023].

42. Casey RM, Akaba H, Hyde TB, Bloem P. Covid-19 pandemic and equity of global human papillomavirus vaccination: descriptive study of World Health Organization-UNICEF vaccination coverage estimates. BMJ Med. 2024;3:e000726. doi: 10.1136/bmjmed-2023-000726

43. Froyman W, Landolfo C, De Cock B, Wynants L, Sladkevicius P, Testa AC, et al. Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study. Lancet Oncol. 2019;20:448–58. doi: 10.1016/S1470-2045(18)30837-4

44. Menon U, Gentry-Maharaj A, Burnell M, Singh N, Ryan A, Karpinskyj C, et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet. 2021;397:2182–93. doi: 10.1016/S0140-6736(21)00731-5

45. Bast RC, Han CY, Lu Z, Lu KH. Next steps in the early detection of ovarian cancer. Commun Med. 2021:1:36. doi: 10.1038/s43856-021-00037-9

46. Menon U, Gentry-Maharaj A, Hallett R, Ryan A, Burnell M, Sharma A, et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. 2009;10:327–40. doi: 10.1016/S1470-2045(09)70026-9

47. Lycke M, Kristjansdottir B, Sundfeldt K. A multicenter clinical trial validating the performance of HE4, CA125, risk of ovarian malignancy algorithm and risk of malignancy index. Gynecol Oncol. 2018;151:159–65. doi: 10.1016/j.ygyno.2018.08.025

48. Jacobs IJ, Menon U, Ryan A, Gentry-Maharaj A, Burnell M, Kalsi JK, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet. 2016;387:945–56. doi: 10.1016/S0140-6736(15)01224-6

49. Tian C, Wen SB, Zhao CY, Yan XN, Du JX. Comparative diagnostic accuracy of the IOTA SRR and LR2 scoring systems for discriminating between malignant and benign adnexal masses by junior physicians in Chinese patients: a retrospective observational study. BMC Womens Health. 2023;23:27–9. doi: 10.1186/s12905-023-02719-z

50. Davenport C, Rai N, Sharma P, Deeks JJ, Berhane S, Mallett S, et al. Menopausal status, ultrasound and biomarker tests in combination for the diagnosis of ovarian cancer in symptomatic women. Cochrane Database Syst Rev. 2022;11:CD011964. doi: 10.1002/14651858.CD011964.pub2

51. Sölétormos G, Duffy MJ, Verheijen RH, Tholander B, Bast RC, Gaarenstroom KN, et al. Clinical use of cancer biomarkers in epithelial ovarian cancer: updated guidelines from the European Group on Tumor Markers. Int J Gynecol Cancer. 2016;26:43–51. doi: 10.1097/IGC.0000000000000586

52. Lycke M, Ulfenborg B, Lauesgaard MJ, Kristjansdottir B, Sundfeldt K. Consideration should be given to smoking, endometriosis, renal function (eGFR) and age when interpreting CA125 and HE4 in ovarian tumor diagnostics. Clin Chem Lab Med. 2021;59:1954–62. doi: 10.1515/cclm-2021-0510

53. Ding L, Zhou YX, He C, Ai JY, Lan GL, Xiong HF, et al. Elevated CA125 levels are associated with adverse clinical outcomes in acute pancreatitis: a propensity score-matched study. Pancreatology. 2020;20:789–94. doi: 10.1016/j.pan.2020.06.009

54. Coleman RL, Herzog TJ, Chan DW, Munroe DG, Pappas TC, Smith A, et al. Validation of a second-generation multivariate index assay for malignancy risk of adnexal masses. Am J Obstet Gynecol. 2016;215:82.e1–11. doi: 10.1016/j.ajog.2016.03.003

55. Enroth S, Berggrund M, Lycke M, Broberg J, Lundberg M, Assarsson E, et al. High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer. Commun Biol. 2019;2:221. doi: 10.1038/s42003-019-0464-9

56. Enroth S, Ivansson E, Lindberg JH, Lycke M, Bergman J, Reneland A, et al. Data-driven analysis of a validated risk score for ovarian cancer identifies clinically distinct patterns during follow-up and treatment. Commun Med. 2022;2:13. doi: 10.1038/s43856-022-00193-6

57. Gyllensten U, Hedlund-Lindberg J, Svensson J, Manninen J, Öst T, Ramsell J, et al. Next-generation plasma proteomics identifies high-precision biomarker candidates for ovarian cancer. Cancers (Basel). 2022;14:1757. doi: 10.3390/cancers14071757

58. Ivansson E, Lindberg JH, Stålberg K, Sundfeldt K, Gyllensten U, Enroth S. Large-scale proteomics reveals precise biomarkers for detection of ovarian cancer in symptomatic women. Sci Rep. 2024;14:17288. doi: 10.1038/s41598-024-68249-2

59. Álvez MB, Edfors F, von Feilitzen K, Zwahlen M, Mardinoglu A, Edqvist PH, et al. Next-generation pan-cancer blood proteome profiling using proximity extension assay. Nat Commun. 2023;14:13. doi: 10.1038/s41467-023-39765-y

60. Lindberg JH, Widgren A, Ivansson E, Gustavsson I, Stålberg K, Gyllensten U, et al. Toward ovarian cancer screening with protein biomarkers using dried, self-sampled cervico-vaginal fluid. iScience. 2024;27:109001. doi: 10.1016/j.isci.2024.109001

61. Russell MR, Lyon J, Balkwill F. Diagnosis of epithelial ovarian cancer using a combined protein biomarker panel. Br J Cancer. 2019;121:483–9. doi: 10.1038/s41416-019-0544-0
Published
2025-02-14
How to Cite
Gyllensten U. (2025). Novel diagnostics for improved treatment of gynecological cancer. Upsala Journal of Medical Sciences, 130, e12111. https://doi.org/10.48101/ujms.v130.12111