Assembly of tetraspanins, galectin-3, and distinct N-glycans defines the solubilization signature of seminal prostasomes from normozoospermic and oligozoospermic men

  • Tamara Janković University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
  • Jelena Danilović Luković University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
  • Irena Miler University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia; and University of Belgrade, Institute of Nuclear Sciences, VINČA, National Institute of the Republic of Serbia, Belgrade, Serbia
  • Ninoslav Mitić University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
  • Ljiljana Hajduković University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
  • Miroslava Janković University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
Keywords: Extracellular vesicles, detergent sensitivity, CD63, CD9, gamma-glutamyl transferase, molecular patterns, normozoospermia, oligozoospermia


Background: Prostasomes, extracellular vesicles (EVs) abundantly present in seminal plasma, express distinct tetraspanins (TS) and galectin-3 (gal-3), which are supposed to shape their surface by an assembly of different molecular complexes. In this study, detergent-sensitivity patterns of membrane-associated prostasomal proteins were determined aiming at the solubilization signature as an intrinsic multimolecular marker and a new parameter suitable as a reference for the comparison of EVs populations in health and disease.

Methods: Prostasomes were disrupted by Triton X-100 and analyzed by gel filtration under conditions that maintained complete solubilization. Redistribution of TS (CD63, CD9, and CD81), gal-3, gamma-glutamyltransferase (GGT), and distinct N-glycans was monitored using solid-phase lectin-binding assays, transmission electron microscopy, electrophoresis, and lectin blot.

Results: Comparative data on prostasomes under normal physiology and conditions of low sperm count revealed similarity regarding the redistribution of distinct N-glycans and GGT, all presumed to be mainly part of the vesicle coat. In contrast to this, a greater difference was found in the redistribution of integral membrane proteins, exemplified by TS and gal-3. Accordingly, they were grouped into two molecular patterns mainly consisting of overlapped CD9/gal-3/wheat germ agglutinin-reactive glycoproteins and CD63/GGT/concanavalin A-reactive glycoproteins.

Conclusions: Solubilization signature can be considered as an all-inclusive distinction factor regarding the surface properties of a particular vesicle since it reflects the status of the parent cell and the extracellular environment, both of which contribute to the composition of spatial membrane arrangements.


Download data is not yet available.


  1. Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J 1997;11:428–42. doi: 10.1096/fasebj.11.6.9194523

  2. Hemler ME. Specific tetraspanin functions. J Cell Biol 2001;155:1103–8.doi: 10.1083/jcb.200108061

  3. Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci 2014;127:3641–48. doi: 10.1242/jcs.154906

  4. Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014;5:1–12. doi: 10.3389/fimmu.2014.00442

  5. Mehul B, Hughes RC. Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion. J Cell Sci 1997;110:1169–78.

  6. Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A, et al. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 2007;8:379–88. doi: 10.1111/j.1600-0854.2007.00539.x

  7. Jones JL, Saraswati S, Block AS, Lichti CF, Mahadevan M, Diekman AB. Galectin-3 is associated with prostasomes in human semen. Glycoconj J 2010;27:227–36. doi: 10.1007/s10719-009-9262-9

  8. Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH, Stout TA, et al. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod 2012;86:1–8. doi: 10.1095/biolreprod.111.095760

  9. Dubois L, Ronquist KG, Ek B, Ronquist G, Larsson A. Proteomic profiling of detergent resistant membranes (lipid rafts) of prostasomes. Mol Cell Proteomics 2015;14:3015–22. doi: 10.1074/mcp.M114.047530

  10. Milutinović B, Goč S, Mitić N, Kosanović M, Janković M. Surface glycans contribute to differences between seminal prostasomes from normozoospermic and oligozoospermic men. Ups J Med Sci 2019;124:111–8. doi: 10.1080/03009734.2019.1592266

  11. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 2003;19:397–422. doi: 10.1146/annurev.cellbio.19.111301.153609

  12. Carlsson L, Nilsson O, Larsson A, Stridsberg M, Sahlén G, Ronquist G. Characteristics of human prostasomes isolated from three different sources. Prostate 2003;54:322–30. doi: 10.1002/pros.10189

  13. Radeva G, Sharom FJ. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochem J 2004;380:219–30. doi: 10.1042/BJ20031348

  14. Krutikova MP, Krotov GI, Zgoda VG, Filatov AV. Study of lipid rafts by gel filtration combined with preliminary staining with fluorescently labeled antibodies 2007;1:219–27. doi: 10.1134/S199074780703004X

  15. Huseby NE. Multiple forms of γ-glutamyltransferase in normal human liver, bile and serum. B BA – Enzymol 1978;522:354–62. doi: 10.1016/0005-2744(78)90069-4

  16. Janković T, Goč S, Mitić N, Danilović Luković J, Janković M. Membrane-associated gamma-glutamyl transferase and alkaline phosphatase in the context of concanavalin A- and wheat germ agglutinin-reactive glycans mark seminal prostasome populations from normozoospermic and oligozoospermic men. Ups J Med Sci 2020;125:10–8. doi: 10.1080/03009734.2019.1690603

  17. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.

  18. Mitić N, Kosanović M, Milutinović B, Goč S, Mladenović D, Grubiša I, et al. Nano-sized CA125 antigen glycocamouflage: mucin – extracellular vesicles alliance to watch? Arch Biochem Biophys 2018;653:113–20. doi: 10.1016/

  19. Kosanović M, Milutinović B, Goč S, Mitić N, Janković M. Ion-exchange chromatography purification of extracellular vesicles. Biotechniques 2017;63:65–71. doi: 10.2144/000114575

  20. Charrin S, Manié S, Thiele C, Billard M, Gerlier D, Boucheix C, et al. A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 2003;33:2479–89. doi: 10.1002/eji.200323884

  21. Claas C, Wahl J, Orlicky DJ, Karaduman H, Schnölzer M, Kempf T, et al. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 2005;389:99–110. doi: 10.1042/BJ20041287

  22. Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, et al. The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem. 2001;276:14329–37. doi: 10.1074/jbc.M011297200

  23. Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 2009;185:381–5. doi: 10.1083/jcb.200811059

  24. Fabiani R, Ronquist G. Association of some hydrolytic enzymes with the prostasome membrane and their differential responses to detergent and PIPLC treatment. Prostate 1995;27:95–101. doi: 10.1002/pros.2990270206

  25. Rabinovich GA, Toscano MA, Jackson SS, Vasta GR. Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 2007;17:513–20. doi: 10.1016/

  26. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochem 2011;50:7842–57. doi: 10.1021/bi201121m

  27. Ahmad N, Gabius HJ, André S, Kaltner H, Sabesan S, Roy R, et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 2004;279:10841–47. doi: 10.1074/jbc.M312834200

  28. Khandelwal S, Roche PA. Distinct MHC class II molecules are associated on the dendritic cell surface in cholesterol-dependent membrane microdomains. J Biol Chem 2010;285:35303–10. doi: 10.1074/jbc.M110.147793

  29. Nichols TC, Guthridge JM, Karp DR, Molina H, Fletcher DR, Holers VM. γ-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol 1998;28:4123–29.

  30. Fornaciari I, Fierabracci V, Corti A, Elawadi HA, Lorenzini E, Emdin M, et al. Gamma-glutamyltransferase fractions in human plasma and bile: characteristic and biogenesis. PLoS One 2014;9:e88532. doi: 10.1371/journal.pone.0088532

  31. Brzozowski JS, Jankowski H, Bond DR, McCague SB, Munro BR, Predebon MJ, et al. Lipidomic profiling of extracellular vesicles derived from prostate and prostate cancer cell lines. Lipids Health Dis 2018;17:211. doi: 10.1186/s12944-018-0854-x

  32. Kesimer M, Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods 2015;87:59–63. doi: 10.1016/j.ymeth.2015.03.013

  33. Buzás EI, Tóth E, Sódar BW, Szabó-Taylor K. Molecular interactions at the surface of extracellular vesicles. Semin Immunopathol 2018;40:453–64. doi: 10.1007/s00281-018-0682-0

  34. Sahlén G, Nilsson O, Larsson A, Carlsson L, Norlén BJ, Ronquist G. Secretions from seminal vesicles lack characteristic markers for prostasomes. Ups J Med Sci 2010;115:107–12. doi: 10.3109/03009730903366067

  35. Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 2000;21:1054–70. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8

  36. Smith LM, Kelleher NL. Proteoform: a single term describing protein complexity. Nature Methods 2013;10:186–7. doi: 10.1038/nmeth.2369

  37. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. PNAS 2009;106:1760–5. doi: 10.1073/pnas.0813167106

  38. Lichtenberg D, Ahyayauch H, Alonso A, Goñi FM. Detergent solubilization of lipid bilayers: a balance of driving forces. Trends Biochem Sci. 2013;38:85–93. doi: 10.1016/j.tibs.2012.11.005

  39. Ronquist G. Prostasomes are mediators of intercellular communication: from basic research to clinical implications. J Int Med 2012;271:400–13. doi: 10.1111/j.1365-2796.2011.02487.x

  40. Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. JEV, 2015;4:27066. doi: 10.3402/jev.v4.27066

  41. Sacchettini JC, Baum LG, Brewer CF. Multivalent protein – Carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochem 2001;40:3009–15. doi: 10.1021/bi002544j

  42. Nydegger S, Khurana S, Krementsov DN, Foti M, Thali M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol 2006;173:795–807. doi: 10.1083/jcb.200508165

  43. Charrin S, Le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E. Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 2009;420:133–54. doi: 10.1042/BJ20082422

How to Cite
Janković, T., Danilović Luković, J., Miler, I., Mitić, N., Hajduković, L., & Janković, M. (2021). Assembly of tetraspanins, galectin-3, and distinct N-glycans defines the solubilization signature of seminal prostasomes from normozoospermic and oligozoospermic men. Upsala Journal of Medical Sciences, 126(1).
Original Articles