Associations of spleen volume with markers of blood count and lipid profile in a large population-based study
Abstract
Background: The aim of our study was to investigate associations of spleen volume with blood count markers and lipid profile in the general population.
Materials & methods: Cross-sectional data from 1,106 individuals aged 30–90 years from the population-based Study of Health in Pomerania (SHIP-START-2) were analyzed. Blood count markers included red blood cell (RBC) counts, hemoglobin, platelet count, and white blood cell (WBC) counts. Lipid profile included total-cholesterol, high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) as well as triglycerides. Linear regression models adjusted for age, sex, body height, and weight were used to associate standardized spleen volume with blood counts and lipid profile markers.
Results: Spleen volume was positively associated with RBC (β = 0.05; 95% confidence interval [CI] = 0.03 to 0.08) and hemoglobin (β = 0.05; 95% CI = 0.01 to 0.09) but inversely with platelet count (β = −16.3; 95% CI = –20.5 to −12.1) and WBC (β = −0.25; 95% CI = −0.37 to −0.14). Furthermore, spleen volume showed inverse associations with total cholesterol (β = −0.17; 95% CI = −0.24 to −0.09), HDL-C (β = −0.08; 95% CI = −0.10 to −0.05), and LDL-C (β = −0.12; 95% CI = −0.17 to −0.06). There was no significant association of spleen volume with triglycerides.
Conclusion: Our study showed that the spleen volume is associated with markers of the blood count and lipid profile in the general population.
Downloads
References
2. Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity 2013; 39: 806–18. doi: 10.1016/j.immuni.2013.10.010
3. Chow KU, Luxembourg B, Seifried E, Bonig H. Spleen size is significantly influenced by body height and sex: establishment of normal values for spleen size at US with a Cohort of 1200 healthy individuals. Radiology 2016; 279: 306–13. doi: 10.1148/radiol.2015150887
4. Mustapha Z, Tahir A, Tukur M, Bukar M, Lee WK. Sonographic determination of normal spleen size in an adult African population. Eur J Radiol 2010; 75: e133–5. doi: 10.1016/j.ejrad.2009.09.025
5. Luu S, Woolley IJ, Andrews RK. Platelet phenotype and function in the absence of splenic sequestration (Review). Platelets 2021; 32: 47–52. doi: 10.1080/09537104.2020.1732322
6. Sahin NE, Oner Z, Oner S, Turan MK. A study on the correlation between spleen volume estimated via cavalieri principle on computed tomography images with basic hemogram and biochemical blood parameters. Anat Cell Biol 2022; 55: 40–47. doi: 10.5115/acb.21.177
7. Emami H, Singh P, MacNabb M, Vucic E, Lavender Z, Rudd JH, et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging 2015; 8: 121–30. doi: 10.1016/j.jcmg.2014.10.009
8. Sahota P, Vahidy F, Nguyen C, Bui TT, Yang B, Parsha K, et al. Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int J Stroke 2013; 8: 60–67. doi: 10.1111/ijs.12022
9. Leite Nde C, Montes EG, Fisher SV, Cancian CR, de Oliveira JC, Martins-Pinge MC, et al. Splenectomy attenuates obesity and decreases insulin hypersecretion in hypothalamic obese rats. Metabolism 2015; 64: 1122–33. doi: 10.1016/j.metabol.2015.05.003
10. Akan AA, Sengül N, Simşek S, Demirer S. The effects of splenectomy and splenic autotransplantation on plasma lipid levels. J Invest Surg 2008; 21: 369–72. doi: 10.1080/08941930802438898
11. Alberti LR, Veloso DF, Vasconcellos Lde S, Petroianu A. Is there a relationship between lipids metabolism and splenic surgeries? Acta Cir Bras 2012; 27: 751–6. doi: 10.1590/S0102-86502012001100002
12. Ai XM, Ho LC, Han LL, Lu JJ, Yue X, Yang NY. The role of splenectomy in lipid metabolism and atherosclerosis (AS). Lipids Health Dis 2018; 17: 186. doi: 10.1186/s12944-018-0841-2
13. Zhang Y, An X, Lin Q, Bai J, Wang F, Liao J. Splenectomy had no significant impact on lipid metabolism and atherogenesis in Apoe deficient mice fed on a severe atherogenic diet. Cardiovasc Pathol 2018; 36: 35–41. doi: 10.1016/j.carpath.2018.06.002
14. Guo B, Pan J, Shen Y, Zhang Q, Wang Z, Huang L, et al. Platelet’s rule of change and clinical significance before and after splenectomy. Am Surg 2019; 85: 1288–1293. doi: 10.1177/000313481908501138
15. Gloger O, Tönnies K, Bülow R, Völzke H. Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors. Phys Med Biol 2017; 62: 5861. doi: 10.1088/1361-6560/aa766e
16. Mazonakis M, Damilakis J, Maris T, Prassopoulos P, Gourtsoyiannis N. Estimation of spleen volume using MR imaging and a random marking technique. Eur Radiol 2000; 10: 1899–1903. doi: 10.1007/s003300000551
17. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371: 2488–98.
18. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377: 111–21. doi: 10.1056/NEJMoa1701719
19. Sjoberg BP, Menias CO, Lubner MG, Mellnick VM, Pickhardt PJ. Splenomegaly: a combined clinical and radiologic approach to the differential diagnosis. Gastroenterol Clin North Am 2018; 47: 643–66. doi: 10.1016/j.gtc.2018.04.009
20. Cenariu D, Iluta S, Zimta AA, Petrushev B, Qian L, Dirzu N, et al. Extramedullary hematopoiesis of the liver and spleen. J Clin Med 2021; 10: 5831. doi: 10.3390/jcm10245831
21. Penny R, Rozenberg MC, Firkin BG. The splenic platelet pool. Blood 1966; 27: 1–16. doi: 10.1182/blood.V27.1.1.1
22. Schmidt HH, Wagner S, Manns M. The spleen as a storage pool in lipid metabolism. Am J Gastroenterol 1997; 92: 1072.
23. Mayes PA. Lipid transport and storage, In: Murray RK, ed. Harper’s Biochemistry. Am J Med. 1996; 25(3): 254–70.
24. Asai K, Kuzuya M, Naito M, Funaki C, Kuzuya F. Effects of splenectomy on serum lipids and experimental atherosclerosis. Angiology 1988; 39: 497–504. doi: 10.1177/000331978803900602
25. Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation. Cells 2019; 8: 854. doi: 10.3390/cells8080854
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Upsala Medical Society. Read the full Copyright- and Licensing Statement.